文章编号:0253-9993(2013)07-1220-07

横波偏振方法在煤样超声测量实验中的应用

张建利¹² 汪 赟³ 张玉贵⁴

(1. 中国科学院 地质与地球物理研究所,北京 100029; 2. 中国科学院大学,北京 100049; 3. 中国科学院 地球化学研究所,贵州 贵阳 550002;4. 河南理工大学 瓦斯地质研究所,河南 焦作 454003)

摘 要:煤样裂隙、层理发育,煤样横波超声测量一直存在着透射波形混杂、难以准确拾取透射横波 初至与波形的问题,从而极大地影响了煤样超声实验中速度与品质因子的测量精度。笔者提出一 种利用偏振特性拾取横波初至的方法,并通过宽带滤波提取横波波形,提高了横波波速与品质因子 测量的精度。实际煤样的超声测量结果表明:与传统经验测量方法相比,横波速度和品质因子的精 度都有了显著的提高,为复杂岩样的超声测量数据分析提供了一种有效的方法。

关键词:煤样;横波;超声测量;偏振;初至;Q值

中图分类号: P631.5 文献标志码: A

Application of shear wave polarization method in ultrasonic measurement of coal samples

ZHANG Jian-li¹² ,WANG Yun³ ZHANG Yu-gui⁴

(1. Institute of Geology and Geophysics Chinese Academy of Sciences Beijing 100029 , China; 2. University of Chinese Academy of Sciences Beijing 100049 , China; 3. Institute of Geochemistry Chinese Academy of Science Guiyang 550002 , China; 4. Institute of Coalbed Gas Geology , Henan Polytechnic University , Jiaozuo 454003 , China)

Abstract: Due to the interference of transmission waves there are some problems and difficulties in accurately picking up the first arrival and waveform of transmitted S-wave in S-wave ultrasonic testing on coal sample all the time. This has a significant impact on the accuracy of velocity and quality factor. Therefore the authors propose a new method using polarization characteristics to pick up the first arrival of S-wave and extract S-wave waveform by wideband filtering to solve this problem in this paper. The test result on coal samples shows that the testing precision of the velocity of S-wave and Q_s has been significantly improved compared with the traditional method. Also the study provides an effective method for the analysis of ultrasonic testing data of other complex rock samples.

Key words: coal sample; S-wave; ultrasonic testing; polarization; first arrival; Q value

岩石介质超声波测试技术是一种了解岩石物理 力学特性及结构特征的重要手段^[1-3]。近年来,随着 煤炭与煤层气资源大规模的勘探开发,针对煤岩的超 声波测试得到越来越多的关注和应用^[4-11]。然而,目 前在煤岩超声测量中存在一个往往被忽略的问题:进 行横波超声测量时,测试人员可能直接拾取整个透射 波形序列的起跳点作为横波初至,或者是根据经验进 行估测,进而根据所拾取的初至计算横波波速,并将 整个续至波形作为横波波形来计算横波的品质因子 *Q*_s。实际上,由于煤岩体内具有很多缝隙和界面,激 发的透射横波在岩体中传播时会发生波型转换而形 成转换纵波,由于纵波波速要大于横波,因此会先于 横波到达接收器。当能量较大或者传播距离较短时, 透射横波将与转换波形叠加混染,导致横波初至难以 识别,此时不能将整个透射波形的初至作为横波初 至,也无法直接提取准确的透射横波波形。此外,实 验室激发横波时,剪切型横波换能器在做剪切主振动 的同时也会不可避免的产生纵向振动^[12],使得接收

收稿日期: 2012-06-14 责任编辑: 韩晋平

基金项目: 国家科技重大专项"大型油气田与煤层气开发"资助项目(2011ZX05:035-001-006HZ 049-01-02); 国家自然科学基金资助项目 (41104084)

作者简介:张建利(1985—),男 山东聊城人,博士研究生。E-mail: zhangjl@ mail. iggcas. ac. cn。通讯作者:王 赟(1969—),男 辽宁大连人, 研究员,博士。E-mail: yunwang@ mail. iggcas. ac. cn

端获得的波形信号也会有透射纵波混染。因此透射横 波初至识别与波形提取是一直存在的有待解决的问 题^[13]。

为了解决这个问题,笔者提出一种利用横波偏振 特性拾取透射横波初至的方法,这种方法可以提高横 波速度的测量精度;同时通过宽带滤波滤除转换纵波 等干扰,可以提取较纯净的透射横波,这为准确计算 品质因子 Q。提供了保证。

方法原理

1.1 煤样特性

由于煤化作用和构造应力作用的结果 煤岩中的 裂隙、层理广泛发育。在定向构造应力的作用下 煤 岩地层发育的裂隙往往定向排列 形成特定的优势方 位。赵群等^[14]对煤样的横波超声测试结果表明:煤 样中定向排列的裂隙会产生明显的速度各向异性和 衰减各向异性,并引起横波分裂现象。因此,可以通 过横波分裂来探测含裂缝煤岩的内部结构和弹性特 征。

1.2 横波分裂测量初至

所谓横波分裂 是指横波在方位各向异性介质中 传播时,沿每一条射线路径都可以分裂为两种偏振 波,它们具有不同的偏振方向、传播速度和衰减速率, 并且在后续的各向异性介质中传播时保持这种特 性[15]。由于两种偏振子波的传播速度存在差别,到 达接收器时存在时差,因此也叫做快、慢横波。各向 异性岩石通常不足以产生足够的分裂时差,快、慢横 波往往混叠在一起,其质点运动轨迹呈椭圆偏振^{116]}, 而区别于纵波的线性偏振特性。自从发现横波分裂 现象以来 国际上众多学者对这种地震波速各向异性 效应及其影响因素进行了深入的研究[17-25]。 Crampin^[26] 经过多年的理论研究与实践证明: 方位各 向异性是广泛存在的,并且很大程度上可以由裂隙的 定向排列引起。由于煤样中的节理、割理与裂隙也会 使透射横波发生分裂^[27],因此,可以利用纵、横波偏 振特性的差异拾取横波初至。

为了获得较高测试精度的横波速度,在进行横波 超声测量时,笔者把接收换能器与发射换能器置于煤 样相对的两侧,采用垂直透射法进行测量^[13];发射端 使用横波换能器激发偏振横波,而在接收端采用两个 正交方向接收的方式,这样可以充分接收横波信 号^[28]。为了测量横波波速V₈和计算品质因子Q₈,必 须要获得透射横波的初至与准确波形。但是,煤样中 存在的节理、裂缝等微构造,不仅会使透射横波发生 横波分裂,也会使地震波发生波型转换和多次反射。

因此,接收端接收到的信号不是单一的透射横波,而 是分裂为快、慢子波的透射横波、转换纵波以及多次 波的混叠波形;如果考虑到横波转换器也会激发纵向 振动,实际的波形还有透射纵波参杂。而且,由于纵 波波速高于横波 因此初至波形是纵波 续至波形才 是透射横波,多次波最后到达。因此,不能直接拾取 整个波形的第1个起跳点作为横波初至 而必须根据 纵波与透射横波的偏振特性差异进行拾取。由于首 先到达的纵波呈线性偏振 尽管续至的透射横波受到 转换纵波等波形的混染使其运动轨迹呈现不规则椭 圆状 笔者仍然可以通过分析质点运动轨迹随时间的 变化 找到由线性偏振过渡到不规则椭圆偏振的时间 点,作为透射横波的初至时刻。锁定横波初至后,可 以确定透射横波存在于初至后的一个主周期大小的 时窗内。由于转换纵波相对于透射横波频率较高,而 多次波频率则较低 因此根据横波有效信号与干扰信 号的频率差异,对时窗内的波形进行宽带滤波,可以 获取较纯净的横波波形。由于多次波能量较弱 此时 宽带滤波的主要目的是滤除高频纵波干扰。

> 裂隙发育煤模型测试

为了验证方法的有效性,笔者首先对数值模型进 行测试。测试煤样模型为单组平行裂隙形成的 HTI 介 质圆柱体,直径和高度均为6 cm 纵波波速为2 000 m/ s 横波波速为1 156 m/s,煤样模型密度为2 000 kg/ m³ 裂缝密度为0.05。在垂直于各向异性对称轴的模 型表面,一侧采用激发换能器激发横波,另一侧使用接 收换能器沿正交方向记录透射波形。模拟所用震源主 频为40 kHz。由于裂隙的存在,初始激发横波在传播 过程中将分裂为快、慢横波,如果遇到介质分界面,还 将发生波型转换和多次反射,形成转换纵波和多次波。 通过褶积合成,笔者模拟得到正交接收的两分量地震 记录。为了同时检测方法的抗噪性,设置信噪比为5, 在模拟地震记录中添加随机噪声,由此得到加噪的*X*, *Y* 两分量地震记录,根据这两个分量可绘出平面质点 运动轨迹,如图1所示。

首先使用滑动时窗法寻找质点运动轨迹的突变 点。通过观察可知整个透射波形的起跳点在 33 μs 左右 将这个时刻作为滑动时窗的起点,逐渐变动时 窗的截止时刻,观察时窗内信号对应的质点运动轨 迹,当质点偏振方向发生明显变化时,所对应的时窗 截止时刻即为透射 S 波的初至。如图 2 所示,当时窗 的截止时刻滑动到 54 μs 时,质点偏振特性发生显著 变化,具体表现为偏离线性轨迹,而逐渐过渡到椭圆 偏振。因此,可以拾取此时间点作为横波初至。通过

图 1 X, Y 正交两分量模拟地震记录与 对应的质点运动轨迹

计算可知 橫波穿过样品所用时间约为52 μs ,表明偏 振分析方法能够在噪声干扰的情况下有效地拾取横 波初至。根据以上分析可知 ,如果按照传统方法拾取 整个透射波形的起跳点作为横波初至 ,则其与真实横 波初至将相差 20 μs ,如此大的误差将严重影响波速 测算和后续的 Q 值计算。

拾取获得横波初至后,为了获得纯净的透射横 波,需要对初至之后一个主周期内的信号进行宽带滤 波,滤除其他波形干扰。为了获得滤波频率上、下限 等参数,首先需要对该区间的信号进行频谱分析,如 图3所示(黑色实线表示初始全部波形对应的频谱, 红色虚线表示S波截取区间对应的频谱)。

Fig. 3 Spectrum analysis of X and Y component

由频谱分析可知,透射横波的能量主要集中于 0.02~0.20 MHz,因此采用 0.02 MHz 作为频率下 限 0.20 MHz 作为频率上限 采用 Butterworth 带通滤 波器进行滤波。图4展示了滤波前后横波主周期内 两分量的波形变化和频谱变化 ,并将滤波后获得的横 波与理论透射横波进行了对比(图中黑色实线表示 滤波前的波形和频谱 红色虚线表示滤波得到的横波 波形和频谱 蓝色实线表示理论透射横波)。从图 4 可以看到 此时高频纵波干扰基本消除 ,而且获得的 横波波形与理论透射波形相关性良好 表明透射横波 的波形得到较好的恢复。传统提取横波波形的做法 是直接将横波初至后的整个接收波形作为有效透射 横波 没有滤除其他干扰 如图 4 中的黑色波形 将其 与滤除干扰信号而获得的纯净横波信号进行比较 ,可 见两者存在较大的振幅差异;此时如果使用传统方法 获得的横波信号计算 Q_{0} 值,可以预见 Q_{0} 值也会具有 较大的误差。

根据振幅谱比值法^[29],以此模型为例,笔者分别 计算了传统方法与新方法所获得的 Q_s值,所使用的 基本公式为

$$\ln\left[\frac{A_1(f)}{A_2(f)}\right] = \frac{\pi f_{\text{main}}}{QV}(x_2 - x_1)$$
(1)

其中 f_{main} 为地震信号的主频; $x_2 - x_1$ 为旅行距离; V 为波速; $A_1(f) , A_2(f)$ 为两个不同距离上的振幅谱。 经过计算可知 新方法求取的 Q_s 值与理论值的相对 误差约为 5% ,而传统方法的 Q_s 测量相对误差可以

达到 20% 表明横波波形提取不准确所造成的 Q_s误差是不可忽略的。

3 实际煤样测试

焦作矿区位村煤矿位于焦作市东部 18 km,主要 含煤地层为石炭系上统太原组和二叠系下统山西组, 测试样品采自位村煤矿二,煤层,煤层位于山西组下 部,为全区稳定的主要可采煤层,层位稳定,结构简 单,为一中灰、低硫无烟煤。根据国际岩石力学学会 实验委员会出台的标准(ISRM)规定及实验室测量仪 器条件,选取具有代表性的岩芯加工成直径6 cm、高 6 cm 的圆柱体,磨光两端面,使其相互平行并垂直于 圆柱体的轴线。下面以该矿区样品为例、使用偏振方 法拾取透射横波的初至,并提取有效横波波形。

首先根据正交两分量的初始波形 绘出全部波形 对应的质点运动轨迹(图5)。可见,由于煤样中传播 距离较短,不同类型的波形相互混叠,无法直接识别 横波初至;而且波形混叠导致质点偏振轨迹也很杂 乱,无法直接找到质点偏振轨迹的突变点,需要通过 滑动时窗法逐步搜索横波初至。

将时窗的起始时刻固定为 65 μs,逐步变动时窗 的截止时刻,可以发现:当截止时刻滑动到 125 μs 时,质点偏振轨迹开始明显偏离线性,如图 6 所示。 因此,笔者拾取此时间点作为透射横波的初至。

确定横波初至后,为了计算 Q_s值,需要进一步提 取透射横波的波形。首先根据透射波形的主频估算 透射横波的主周期约为 130 μs。截取横波初至之后 130 μs内的信号进行频谱分析,如图 7 所示。可见, 透射横波能量主要集中于 0.010~0.025 MHz,采用

图 5 样品测试得到的 X, Y 两分量波形及其质点运动轨迹 Fig. 5 Waveform recording of X and Y component in

sample test and the corresponding particle motion trajectory

这一对频率值作为频率上、下限进行带通滤波。图8 展示了滤波前后两分量的波形变化和频谱变化。由 频谱分析(图8(b)(d))可知,高频纵波和低频多次 波干扰基本消除,表明透射横波的波形得到较好的恢 复。提取横波波形后,可以根据振幅谱比值法求取 Q。值,通过计算可知,传统方法与新方法求取的Q。 值相差约21%,如此大的误差足以影响对煤岩力学 特性规律的总结,因此有必要采用本文方法对以前的 超声测试结果进行重新计算、分析。

4 原生结构煤测试结果对比分析

笔者使用本文方法对之前所做的原生结构煤超

图6 偏振分析时窗以及时窗内信号的质点运动轨迹

Fig. 6 Waveform recording in selected polarization analysis window and the corresponding particle motion trajectory

图 8 滤波前后横波主周期内 X, Y两分量的波形变化和频谱变化

Fig. 8 Waveform and spectrum of X and Y component before and after filtering in sample test

声测试结果^[30-31]重新进行了计算和分析,并将原始测量结果与本文方法测量结果进行了对比,见表1, 2。其中,煤样A~F₂是来自不同矿区、变质程度不同的煤岩样品。

表1中,原始波速测量值对应的横波初至是测试 人员根据经验拾取而来,分析可知,原始测量方法与 本文方法所获取的横波波速*V*。的平均相对误差约为 8.0%,这表明本文方法基本可靠,而且由于其基于偏 振特性这一波动特征拾取初至,因此可以在原理上保 证本文方法的精度高于传统经验方法。表2列出了 品质因子 Q_s前后两种方法的计算结果。由于原始计 算方法在提取横波波形时没有考虑滤除波形混染等 干扰 因此原始计算值与本文方法计算值会存在较大 差别 ,由表2可知 ,原始测量方法与本文方法所获取 的 Q_s的平均相对误差约为 38%。

5 结 论

(1) 在文中设定模型的情况下 新方法可以在有

表1 煤样横波速度测试结果

Table 1 V_s test results of coal samples									
煤样编号 -	原	始测量 <i>V_s</i> /(m・s	-1)	本	X ,Y Z 平均相				
	V_X	V_Y	V_Z	V_X	V_Y	V_Z			
А	1 097	959	1 032	1 051	1 047	965	6. 57		
В	1 079	938	1 349	1 111	969	1 158	7.52		
C_1	1 264	1 012	1 238	965	948	1 038	19.00		
C ₂	1 127	1 080	1 121	1 083	1 124	1 053	4.81		
D	1 060	1 038	1 024	1 040	1 047	930	4.30		
Е	991	694		923	900		15.10		
\mathbf{F}_{1}	1 266	1 113		1 188	1 154		5.06		
\mathbf{F}_2	1 612	1 492	1 452	1 609	1 519	1 379	2.42		

注: X, YZ分别表示煤层走向方向、倾向方向、垂直层理方向,表2同。

表 2	煤样横波品质因子测试结果							
Table 2	$Q_{\rm s}$ test results of coal samples							

煤样	原始测量 $Q_{ m s}$					本次测量 Q。					X ,Y Z 平均		
编号	XY	XZ	YX	YZ	ZX	ZY	XY	XZ	YX	YZ	ZX	ZY	┛相对误差/%
A	3.04	2.98	2.41	2.35	3.07	2.95	6.39	5. 56	5.97	5.65	4.39	4.21	46
В	3.28	3.23	3.52	2.99	5.13	4. 57	2.97	3.41	3. 59	3.74	4.83	4.38	8
C_1	3.61	2.94	2.24	2.02	3.18	2.89	4.02	4. 22	4.03	4.21	3.18	3.89	27
C_2	3.47	3.46	3.97	3.87	4.79	4.04	6. 29	5.23	7.06	5.29	3.86	3.87	30
D	3.14	3.12	3.09	2.81	3.37	2. 98	11.36	8.59	12.45	9.67	4.61	5.11	58
Е	5.84	5.67	4.64	2.57)		2. 47	2.20	2.61	2.57			93
\mathbf{F}_1	6.69	6.32	5.87	4.96	×XI		5.15	3.97	5.06	4.70			27
F_2	9.18	8.89	8.09	7. 84	6. 93	6. 44	10. 33	9.16	6.01	6.10	7.22	7.03	15

噪声存在时准确地拾取横波初至,并且求取的 Q。值 与理论值的相对误差仅为 5%;而传统经验估测方法 由于无法准确拾取横波初至,Q。测量误差可以达到 20% 这表现了发展本文方法的必要性和其优越性。

(2)使用本文方法对原生结构煤的超声测量波 形进行处理,并与传统经验估测方法进行对比,结果 表明:传统经验方法与本文方法所求取的横波波速之 间的平均相对误差约为8.0%,品质因子的相对误差 可达38%。由于本文方法基于横波偏振这一波动特 性拾取初至,从原理上保证了其精度高于传统经验方 法,因此有必要使用本文方法对之前的横波超声测试 结果进行重新计算和分析。

(3)本文方法不仅可以用于煤系岩石的超声测 试,也可用于其他复杂岩样的超声测试处理。

参考文献:

- Sayers C. Stress-induced ultrasonic wave velocity anisotropy in fractured rock [J]. Ultrasonics ,1988 26(6): 311-317.
- [2] 赵明阶 徐 蓉.岩石声学特性研究现状及展望[J].重庆交通 学院学报 2000 ,19(2):79-86.

Zhao Mingjie ,Xu Rong. The present situation and prospect of the

acoustic properties research in rock [J]. Journal of Chongqing Jiaotong Institute 2000 ,19(2):79-86.

[3] 魏建新,王椿镛.横波测试技术的实验室研究[J].石油地球物 理勘探 2003 38(6):630-635.

Wei Jianxin ,Wang Chunyong. Study of S-wave test and measurement technique in laboratory [J]. Oil Geophysical Prospecting ,2003 ,38 (6):630-635.

[4] 彭苏萍 高云峰,彭晓波,等.淮南煤田含煤地层岩石物性参数研究[J].煤炭学报 2004 29(2):177-181.
 Peng Suping ,Gao Yunfeng ,Peng Xiaobo ,et al. Study on the rock physic parameters of coal bearing strata in Huainan coalfield [J].

Journal of China Coal Society 2004 29(2):177-181.

- [5] 吴基文,姜振泉,樊 成,等.煤层抗拉强度的波速测定研究
 [J].岩土工程学报 2005 27(9):999-1003.
 Wu Jiwen, Jiang Zhenquan, Fan Cheng, et al. Study on tensile strength of coal seam by wave velocity [J]. Chinese Journal of Geotechnical Engineering 2005 27(9):999-1003.
- [6] 闫立宏.杨庄煤矿煤岩波速特征及与其强度的关系研究[J].煤 炭科学技术 2006 34(6):57-60.

Yan Lihong. Relationship study between characteristics and strength of coal and rock wave velocity in Yangzhuang Mine [J]. Coal Science and Technology 2006 34(6):57–60.

[7] 孟召平,刘常青,贺小黑.煤系岩石声波速度及其影响因素实验 分析[J].采矿与安全工程学报 2008 25(4):390-394. Meng Zhaoping ,Liu Changqing ,He Xiaohei. Experimental research on acoustic wave velocity of coal measures rocks and its influencing factors [J]. Journal of Mining & Safety Engineering ,2008 ,25 (4) : 390–394.

[8] 朱国维,王怀秀,韩堂惠,等.地层条件下煤层顶、底板声波速度 与反射特征[J].煤炭学报 2008 33(12):1391-1396.

Zhu Guowei ,Wang Huaixiu ,Han Tanghui ,et al. Reflection characteristics and acoustic velocity of coal roof and floor under formation conditions [J]. Journal of China Coal Society 2008 ,33(12):1391– 1396.

[9] 郭德勇,韩德馨,冯志亮.围压下构造煤的波速特征实验研究[J].煤炭科学技术,1998 26(4):21-24.

Guo Deyong ,Han Dexin ,Feng Zhiliang. Experimental research on wave velocity of deformed coal characteristics under the ambient pressure [J]. Coal Science and Technology ,1998 26(4):21-24.

 [10] 董守华. 气煤弹性各向异性系数实验测试[J]. 地球物理学报, 2008 51(3):947-952.
 Dong Shouhua. Test on elastic anisotropic coefficients of gas coal
 [J]. Chinese Journal Geophysics 2008 51(3):947-952.

 [11] 孟召平 涨吉昌 Joachim T. 煤系岩石物理力学参数与声波速度 之间的关系[J]. 地球物理学报 2006 49(5):1505-1510.
 Meng Zhaoping ,Zhang Jichang ,Joachim T. Relationship between physical and mechanical parameters and acoustic wave velocity of coal measures rocks [J]. Chinese Journal of Geophysics ,2006 49 (5):1505-1510.

[12] 魏建新 狄帮让. 岩块超声横波速度高精度测试方法试验研究
 [J]. 中国石油大学学报(自然科学版) 2011 35(6): 36-42, 50.

Wei Jianxin , Di Bangrang. Experimental research on ultrasonic method based on laboratory measurement for accurate estimation of shear wave velocity [J]. Journal of China University of Petroleum (Edition of Natural Science) 2011 35(6):36-42 50.

- [13] 魏建新,狄帮让. 地震物理模型超声测试技术中的几个问题
 [J]. 勘探地球物理进展 2003 26(4):294-300.
 Wei Jianxin ,Di Bangrang. Several problems of the ultrasonic measurement techniques of seismic physical model [J]. Progress in Exploration Geophysics 2003 26(4):294-300.
- [14] 赵 群,郝守玲. 煤样的超声速度和衰减各向异性测试实例
 [J]. 地球物理学进展 2006 21(2):531-534.
 Zhao Qun, Hao Shouling. Anisotropy test instance of ultrasonic velocity and attenuation of coal sample [J]. Progress in Geophysics, 2006 21(2):531-534.
- [15] Crampin Stuart. Evaluation of anisotropy by shear-wave splitting[J]. Geophysics ,1985 50(1):142-152.
- [16] Li Xiangyang Crampin Stuart. Linear-transform techniques for processing shear-wave anisotropy in four-component seismic data [J]. Geophysics ,1993 58: 240-256.
- [17] Thomsen Leon. Elastic anisotropy due to aligned cracks in porous rock [J]. Geophysical Prospecting 1995 43(6): 805-829.
- [18] 张中杰 滕吉文 贺振华. EDA 介质中地震波速度、衰减与品质因 子方位异性研究[J]. 中国科学(E辑) 1999 29(6):569-574. Zhang Zhongjie ,Teng Jiwen ,He Zhenhua. The direction attenuation research on seismic wave velocity ,attenuation quality factor of EDA

medium [J]. Science in China (Ser. E) ,1999 29(6):569-574.

[19] 张中杰. 地震各向异性研究进展 [J]. 地球物理学进展 ,2002, 17(2):281-293.

> Zhang Zhongjie. A review of the seismic anisotropy and its applications [J]. Progress in Geophysics 2002 ,17(2):281-293.

- [20] Chapman Mark. Frequency-dependent anisotropy due to meso-scale fractures in the presence of equant porosity [J]. Geophysical Prospecting 2003 51(5): 369-379.
- [21] Crampin Stuart Peacock Sheila. A review of shear-wave splitting in the compliant crack-critical anisotropic earth [J]. Wave motion, 2005 A1(1):59-77.
- [22] 王 赟 滕殿波 邢春颖. 多分量地震技术实用化的一些关键问题[J]. 勘探地球物理进展 2005 28(3):174-177.
 Wang Yun ,Teng Dianbo ,Xing Chunying. Some key problems to-wards practicability of multicomponent seismic technology[J]. Progress in Exploration Geophysics 2005 28(3):174-177.
- [23] 石 瑛,王 赟,芦 俊.用 3CVSP 资料分析含煤地层的方位 各向异性[J].煤炭学报 2007 32(8):813-817.
 Shi Ying ,Wang Yun ,Lu Jun. Analysis of azimuthal anisotropy in coal measures by 3CVSP data [J]. Journal of China Coal Society , 2007 32(8):813-817.
- [24] Tian X B Zhang J L Si S K et al. SKS splitting measurement with horizontal component misalignment [J]. Geophys. J. Int. ,2011 , 185: 329-340.
- [25] 张建利,田小波,张洪双,等.贝加尔裂谷区地壳上地幔复杂的
 各向异性及其动力学意义[J].地球物理学报,2012,55(8):
 2523-2538.

Zhang Jianli ,Tian Xiaobo Zhang Hongshuang ,et al. The crust and upper mantle anisotropy in Baikal Rift Zone and its dynamic significance [J]. Chinese Journal Geophysics 2012 55(8):2523-2538.

- [26] Crampin Stuart. A review of wave motion in anisotropy and cracked elastic-medium [J]. Wave Motion ,1981 3(6):49-56.
- [27] 王 赟,高 远,接铭训. 煤系地层裂缝裂隙发育带的预测
 [J]. 煤炭学报 2003 28(6):566-568.
 Wang Yun ,Gao Yuan ,Jie Mingxun. The prediction of fractured zone in coal-series strata [J]. Journal of China Coal Society 2003, 28(6):566-568.
- [28] Rai C S ,Hanson K E. Shear-wave velocity anisotropy in sedimentary rock: A laboratory study [J]. Geophysics ,1988 53(4):35-41.
- [29] Tonn R. The determination of the seismic quality factor Q from VSP data: a comparison of different computational methods [J]. Geophysical Prospecting J991 39(1):1-27.

[30] 申振华. 煤及其含气性地球物理响应研究[D]. 焦作: 河南理工 大学 2011.

Shen Zhenhua. Research on geophysical response of coal and their gas bearing [D]. Jiaozuo: Henan Polytechnic University 2011.

[31] 王 赟,许小凯,张玉贵.6种不同变质程度煤的纵横波速度特 征及其与密度的关系[J].地球物理学报 2012 55(11):3754-3761.

> Wang Yun ,Xu Xiaokai ,Zhang Yugui. Characteristics of P-and Swave velocities and their relationships with density of six metamorphic kinds of coals [J]. Chinese Journal Geophysics ,2012 ,55 (11):3754-3761.