文章编号:0253-9993(2012)11-1841-06

基于时序 SAR 技术的采空区上方高速公路 变形监测及预测方法

范洪冬¹² 邓喀中¹² 祝传广¹² 陈炳乾¹² 李培现¹²

(1. 中国矿业大学国土环境与灾害监测国家测绘局重点实验室,江苏徐州 221116;2. 中国矿业大学 江苏省资源环境信息工程重点实验室,江苏徐州 221116)

摘 要:为掌握采空区上方所建高速公路的变形趋势,解决老采空区上方地表变形监测数据较少, 不易建立时序沉降预测模型的问题,利用 D-InSAR(Differential Interferometric Synthetic Aperture Radar)技术对某高速公路进行了变形监测和分析,同时将其结果同地面实测数据相融合,并以 LS-SVM(Least Squares-Support Vector Machine)为基础,建立了采空区上方高速公路变形预计模型,通 过实例,验证了模型的正确性。具体过程:处理融合数据为等时间间隔,并将其趋势项去除,对余项 进行平稳性、正态性及零均值处理;利用 Cao 方法计算嵌入维数,建立训练样本集,并进行 LS-SVM 学习训练;最后,采用训练好的模型对未来地表沉降进行预计。以 511 号监测点为研究对象,建立 滚动预计方法,结果显示其最大下沉绝对误差 3 mm,最大相对误差 2.2%,取得了较为可靠的预计 成果。

关键词:高速公路;形变监测;D-InSAR;LS-SVM;预计 中图分类号:TD325.4 文献标志码:A

Deformation monitoring and prediction methods for expressway above goaf based on time series SAR technique

FAN Hong-dong^{1,2} ,DENG Ka-zhong^{1,2} ,ZHU Chuan-guang^{1,2} ,CHEN Bing-qian^{1,2} ,LI Pei-xian^{1,2}

(1. Key Laboratory for Land Environment and Disaster Monitoring of SBSM China University of Mining and Technology Xuzhou 221116 China; 2. Jiangsu Key Laboratory of Resources and Environmental Information Engineering China University of Mining and Technology Xuzhou 221116 China)

Abstract: In order to obtain the deformation law of expressway above goaf solve not enough monitoring data for abandoned mine to establish the subsidence prediction models the fused deformation values of level measure and Differential Interferometric Synthetic Aperture Radar(D-InSAR) technique were used to establish the prediction models based on Least Squares-Support Vector Machine(LS-SVM). The details are as follows: the fused data were processed to get equal-time interval time series deformation values ,whose trend items should be rejected ,and the residues were processed by stationary ,normality and zero mean; Using Cao method to calculate embedding dimension ,and establishing sample set to train LS-SVM model; Finally ,using the model to predict the land subsidence in the future. The rolling prediction results of the No. 511 point show that the maximum absolute error of subsidence is 3 mm ,maximum relative error is 2. 2%. Therefore the predicting results are reliability.

Key words: expressway; deformation monitoring; D-InSAR; LS-SVM; prediction

据 2010 年统计结果,我国因采矿破坏的土地面积达 400 多万公顷,且仍以每年 20 万 hm² 的速度递

增。随着矿区建设步伐的加快,一些建筑物、交通、通 讯等设施不可避免的要建在老采空区上方。如京福

作者简介:范洪冬(1981—),男山东新泰人,讲师。E-mail: cumtfanhd@163. com

收稿日期: 2011-09-26 责任编辑: 王婉洁

基金项目:国家自然科学基金资助项目(41071273);中央高校基本科研业务费专项资金资助项目(2010QNA21);国土环境与灾害监测国家测绘局重点实验室开放基金资助项目(LEDM2011B07)

高速公路徐州东西绕城段、晋焦高速、乌奎高速、太旧 高速、潭邵高速、邯涉高速、焦晋高速、郑少高速、禹登 高速公路等都不同程度地穿越了老采空区^[1]。老采 空区自身具有隐蔽性、复杂性、突发性和长期性等特 点 在其上方建设高速公路,易使地面出现不均衡沉 陷、倾斜岩体沿层面或断层面产生滑动变形、空洞垮 落引起地面突然塌陷等现象,最终导致公路倾斜、开 裂、沉陷,造成人员伤亡和财产损失。因此,迫切需要 对运营期的高速公路路面和边坡进行变形监测,推演 形变规律,做出预报预警。

传统的监测方法,虽然精度较高,却存在工作量 大、成本高、测点稀疏、人身安全不易保证等缺点,难 以获取大区域的三维空间形变信息和历史信息。此 外 老采空区上方地表下沉量较为平稳 故地面实测 数据缺乏 ,并且观测时间间隔较大 ,不利于非线性沉 降预测模型的建立。因此,利用时序 SAR(Synthetic Aperture Radar) 技术来监测老采空区上方高速公路 的路面沉降、裂缝及边坡变形则可在一定程度上解决 这些问题。到目前为止,国内外利用该技术(包括永 久散射体干涉测量、短基线集等新技术) 主要以监测 区域性沉降为主[2-4],而对高等级公路、铁路等带状 地物的变形监测实例较少。2006 年 Power 等^[5]利用 D-InSAR(Differential Interferometric SAR) 技术监测了 美国3条高速公路边坡变形情况 取得了较好的试验 效果。2009年,中南大学朱建军教授申请了"InSAR 监测高速公路路面沉降方法"的专利。东北大学芮 勇勤教授将 GPS(Global Positioning System) 和 InSAR 技术相结合,对采空区上方高速公路进行了变形监 测 获取了禹登高速 2007 年 6 月—2008 年 6 月期间 的路面沉降情况^[6-8]。

然而,现有研究并不完善^[9],如一些高速公路变 形监测应用中所使用的 SAR 影像分辨率较低 (30 m),而高速公路宽度有限,使得影像定位和形变 精度存在误差;缺乏时序沉降预测方法及采空区地基 稳定性评价方面的研究。支持向量机、神经网络等沉 降预测方法都需大量样本进行学习训练^[10-12],因此, 利用时序 SAR 技术获取的地表沉降,或将之与地表 实测资料相融合建立样本集,无疑会在一定程度上解 决这一问题。

为此,本文选用8景 PALSAR 数据,获取了某采 空区上方高速公路2007—2010年间的形变量,融合 地面9次水准测量结果和工作面开采情况,建立了基 于最小二乘支持向量机(LS-SVM)理论的时序沉降 预测方法,为老采空区地基稳定性评价及高速公路变 形监测方法研究提供了新的尝试。

1 基于 LS-SVM 的时序预测方法

1.1 基本原理

LS-SVM 是将传统支持向量机中的不等式约束 改为等式约束,实质是将二次规划问题转化为求解线 性方程组问题,减少了运算时间,也优化了标准 SVM 的训练。设样本为n维向量,某区域的样本可以表示 为: (x_1,y_1) ,… $(x_i,y_i) \in R^n \times R$,则可以用一非线性 映射 $\psi(\cdot)$ 把样本从原空间 R^n 映射到特征空间 φ_{xi} , 在此高维特征空间中构造最优决策函数^[13]:

$$y(x) = \boldsymbol{\omega} \cdot \boldsymbol{\varphi}(x) + b \tag{1}$$

利用结构风险最小化原则 "最优化问题就转化为 寻找使下面风险函数最小的 ƒ(x) 即

$$\min = \frac{1}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w} + C \sum_{i=1}^{i} \xi_{i}^{2}$$
(2)

式中 C 为惩罚因子;

约束条件:

式中 ω 为权值矢量; b为偏置。

$$\begin{cases} y_i = \mathbf{w}^{\mathrm{T}} \varphi(x_i) + b + \xi_i \\ i = 1 \cdots n \end{cases}$$
(3)

引入 Lagrange 乘子 a_i ,并根据 KKT 优化条件可 得^[14-15]:

$$\begin{cases} \frac{\partial L}{\partial W} = 0 \longrightarrow \mathbf{w} = \sum_{i=1}^{n} a_{i} \gamma \varphi(x_{i}) \\ \frac{\partial L}{\partial b} = 0 \longrightarrow \sum_{i=1}^{n} a_{i} = 0 \\ \frac{\partial L}{\partial \xi} = 0 \longrightarrow a_{i} = C \xi_{i} \\ \frac{\partial L}{\partial a_{i}} = 0 \longrightarrow \gamma_{i} = \mathbf{w}^{\mathrm{T}} \varphi(x_{i}) + b + \xi_{i} \end{cases}$$
(4)

最小二乘 SVM 的核函数一般定义^[16] 如下:

$$K(x \, \varkappa_i) = \exp\left(-\frac{\|x - x_i\|^2}{2\sigma^2}\right) \tag{5}$$

则得到最终的线性回归函数^[15]:

$$f(x) = \sum_{i=1}^{n} a_i K(x \ x_i) + b$$
 (6)

1.2 基于 LS-SVM 的时序预测建模方法

根据时间序列分析原理,采用滚动预测方法对数 据建模^[17]。假设 n 为数据总量 m 为嵌入维数(影响 下一步预测结果的观测数据个数),如要预测第 t+m次的地表移动数据 X_{t+m} ,可以将先前的观测值{ X_t , X_{t+1} , X_{t+2} ; \cdots , X_{t+m-1} } (t = 1, 2, \cdots , n-m) 作为训练数 据 构建 Y = F(X) 的支持向量机函数,然后利用训练 好的模型函数,对新观测量进行预测。

基于 LS-SVM 的时序预测模型建立步骤如下:

(1)选取内插函数,将实测(水准、D-InSAR等) 的下沉值转化成等时间间隔的时序下沉量。

(2)对内插后的数据进行平稳化处理,去除趋势 项,并进行平稳性检验、零均值检验与标准正态性检 验。

(3) 对数据进行归一化处理。利用 Cao 方法^[18] 计算预测数据的嵌入维数 *m*,建立学习和测试样本数 据,并进行 LS-SVM 回归训练。

(4) 采用所训练的模型进行老采空区上方高速 公路变形预测计算。

2 试验结果及分析

2.1 试验区域、数据及时序沉降量的获取

试验中所涉及的高速公路位于江苏北部,该段高速公路通过2个煤矿的开采区域,尤其是南部有260m长的路段恰好位于采空区上方,由井下开采条

件获悉,该矿在2005年仍有开采活动。选取8景 PALSAR数据(表1)根据时间及空间基线进行最优 组合得到了7个差分干涉对。为便于分析将所得到 的7组干涉图进行了形变量累加,形成了2007— 2010期间的年度地表沉降场变化图(图1)。

表1 影像参数 Table 1 Parameters of images

序号	获取时间	时间基线/d	垂直基线/m
1	2007-02-20	0	0
2	2008-01-08	322	1 432
3	2008-02-23	368	2 088
4	2008-04-09	414	2 512
5	2009-01-10	690	-1 201
6	2009-02-25	736	-1 030
7	2010-01-13	1 058	602
8	2010-02-28	1 104	1 182

图1 高速公路附近年度地表下沉形变场

从空间上看:整条高速公路发生沉降的区域主要 集中在中部和南部,而这主要是由煤矿开采所造成的。 中部区域工作面开采强度大,最大下沉区域在46 d内 下沉约310 mm,其影响范围边界已基本到达高速公路,有必要采取一定的预防和监测措施;南部区域为老 采空区,其地表变形量虽然较小,但由于采空区离高速 公路较近(最近处50 m 左右),因此 2006—2009 年间 一直在进行该区域的地面形变监测。

从时间上看:北部矿区的开采范围离高速公路较远,采掘时间集中在2008—2009年,且下沉区域逐渐向东部扩展,没有对高速公路产生影响;中部矿区在

2007—2008年间对高速公路的影响较大,之后开采 范围向东部扩展,煤矿开采对高速公路的影响变小, 但2009—2010年间因部分工作面回向开采,导致高 速公路再次受到影响;高速公路在南部穿越老采空 区2007—2010年间一直存在较小的地表下沉。

从形变量上看:中部矿区对高速公路的影响主要 集中在 2007—2008 年间 期间公路附近的地表下沉达 到 200 mm 以上 因该区域没有地面监测资料,无法进 行对比分析;南部区域 2007—2010 年间的最大下沉累 加值为 672 mm,从图 2 中可以看出,下沉较大的区域 恰好位于老采空区开采工作面上方,而高速公路地面 监测线则位于下沉盆地的边缘附近 ,下沉量较小 ,地表 监测点 2007—2010 年间最大累积下沉约 230 mm。

2007—2009 年间,利用水准仪对布设于高速公路南部区域的100多个点进行了9次的观测,但时间间隔不够均匀,后期跨度较大,加之多数点遭到了破坏,不便用来进行时序形变预测,因此,需要将D-In-SAR及水准测量得到的变形数据进行融合处理,来建立沉降预测模型。为验证D-InSAR监测地表沉降的有效性,选取21个地面监测点(图2)的实测沉降量(2007—2008)与干涉SAR技术得到的沉降量进行了对比(图3) 除少量点外,两者相差不大,因此可以选取监测效果较好,且形变量较大的测点建立时序沉降预测模型。

2.2 数据预处理

选取观测数据较为齐全,离工作面约160m的 511号点作为研究对象。根据实测和差分干涉测量 数据的时间间隔,将两者数据进行融合建立如表2所 示的时序形变量。表2中的原始序列为非等间距序 列,在进行时序 SVM 预测建模前,需要将其处理为等 间距序列。老采空区变形为复杂的非线性动力学过 程,加之上方建设有高速公路,其地表形变过程更为 复杂,因此考虑采用三次样条函数进行逼近和插值。 试验中采用35d进行内插处理,结果见表3。

图 2 开采巷道、高速公路沿线监测点与地表沉降场 (2007-02-2010-02)的叠加

Fig. 2 Overlaying image of mining tunnels monitoring points along expressway and land subsidence range(2007-02-2010-02)

图 3 地面实测与 D-InSAR 技术获取的下沉结果对比 Fig. 3 Comparison of the subsidence generated by leveling points and D-InSAR technique

观测日期	时间间隔/d	下沉量/mm	观测日期	时间间隔/d	下沉量/mm	观测日期	时间间隔/d	下沉量/mm
2007-02-05	0	0	2008-02-23*	393	55	2009-03-28	772	103
2007-03-11	34	8	2008-04-09*	439	56	2009-06-22	858	106
2007-04-15	69	19	2008-10-09	602	84	2010-01-13*	1 063	127
2007-05-21	105	23	2008-12-24	678	87	2010-02-28*	1 109	134
2007-06-16	141	31	2009-01-10*	695	101			
$2008 - 01 - 08^*$	347	51	2009-02-25*	741	105			

表 2 511 号点水准及 D-InSAR 测量结果组成的时序下沉值 Table 2 Time series subsidence of No. 511 point generated by leveling measure and D-InSAR technique

注:* 表示其数据是由 D-InSAR 技术得到的形变结果。

表 3 511 号点内插为等间距的时序

Table 3	Equal-time	interval	time	series	deformation	values	of	the	No. 51	1 p	oin
---------	------------	----------	------	--------	-------------	--------	----	-----	--------	-----	-----

序号	时间间隔/d	下沉量/mm	序号	时间间隔/d	下沉量/mm	序号	时间间隔/d	下沉量/mm
1	0	0	12	385	55	23	770	103
2	35	8	13	420	55	24	805	103
3	70	19	14	455	58	25	840	105
4	105	23	15	490	66	26	875	107
5	140	31	16	525	75	27	910	110
6	175	38	17	560	84	28	945	113
7	210	42	18	595	85	29	980	117
8	245	45	19	630	78	30	1 015	121
9	280	47	20	665	80	31	1 050	125
10	315	49	21	700	104	32	1 085	130
11	350	51	22	735	106	33	1 120	136

老采空区变形过程不是一个随时间平稳变化的 过程 在建立预测模型前应首先对观测数据进行平稳 化处理。采用回归分析的方法剔除观测数据中的趋 势项(图4),并对余项进行平稳性,零均值和正态性 检验。对进行处理之后的数据,采用 Cao 方法计算的 嵌入维数为4。最后,利用滚动预测方法对数据建立 预测模型。

图 4 511 号点剔除趋势项后的残余项

Fig. 4 Residues of No. 511 point rejected the trend items

2.3 预测模型实现及分析

为验证预测模型的精度 根据计算出的嵌入维数 m=4 将表 3 中前 26 个数据用矩阵形式建立训练样 本集(式(7))。通过 LS-SVM 回归训练建立预测模 型,最后对 27~33 这 7 期数据进行预测,并将预测结

从表4中的预测结果可以看出,基于 LS-SVM 的 老采空区时序预测结果与实测结果有较好的吻合,该 点最大绝对误差为3 mm,最大相对误差为2.2%。 由此可见,将水准测量及 D-InSAR 技术得到的形变 量进行融合处理,解决了在预测模型建立时样本点过 少的缺点,具有一定的研究价值。

表 4 551 号点最后 7 期实测及预计值的比较 Table 4 Comparison of the predicting value and actual measurement of No. 511 point

米미		最大绝对	最大相对					
关加	27	28 29	30	31	32	33	误差/mm	误差/%
实测值	110	113 117	121	125	130	136	2	2.2
预测值 	109	112 116	120	125	129	133	3	2.2

3 结 论

(1)初步利用 L 波段的 PALSAR 数据获取了某 高速公路在 2007—2010 年间因煤矿开采导致的地表 沉降情况。试验结果表明 ,D-InSAR 技术可以有效获 取其变形范围及发展趋势 ,监测范围大,精度较高。

(2) 将地面实测及 D-InSAR 技术获取的高速公 路变形数据进行融合,建立了基于 LS-SVM 的时序 沉降预计模型,通过样本扩充,预测结果与实测较为 一致。因此,这种方法可为缺乏地面实测资料的带状 地物、矿区等区域的变形监测与预计提供新的思路和 参考。

(3) D-InSAR 技术用于监测高速公路变形等带 状地物时 影像的分辨率、大气、轨道及噪声等影响因 素 有必要综合考虑 将来可考虑使用 TerraSAR 等高 时间和空间分辨率的 SAR 数据进行深入的研究。

参考文献:

[1] 童立元,刘松玉,邱 钰.高速公路下伏采空区危害性评价与处 治技术[M].南京:东南大学出版社 2006.

Tong Liyuan ,Liu Songyu ,Qiu Yu. Hazard potential evaluation and treatment technology of highway underlain goaf [M]. Nanjing: South– east University Press 2006.

- [2] Ng A H ,Ge L L ,Yan Y Q. Mapping accumulated mine subsidence using small stack of SAR differential interferograms in the Southern coalfield of New South Wales ,Australia [J]. Engineering Geology , 2010 ,115: 1–15.
- [3] Yang C S ,Zhang Q ,Zhao C Y. Monitoring mine collapse by D-In-SAR[J]. Mining Science and Technology (China) ,2010 ,20(5): 696-700.
- [4] Lauknes T R Zebker H A Larsen Y. InSAR deformation time series using an L1-Norm small-baseline approach [J]. IEEE Transactions on Geoscience and Remote Sensing 2010 7(1):536-547.
- [5] Power D , Youden J , English J. InSAR evaluation of landslides in

support of roadway design and realignment [A]. 2006 IEEE International Geoscience and Remote Sensing Symposium [C]. Danvers: Institute of Electrical and Electronics Engineers ,Inc. ,2006: 3848 – 3851.

[6] 杨侣珍. 基于 GPS、CR-InSAR 技术的高速公路采空区路基变形 监控研究[D]. 长沙: 长沙理工大学 2009.

Yang Lüzhen. Study on transform supervision and application in using technical of GPS and CR-InSAR to monitor goaf highway [D]. Changsha: Changsha University of Science & Technology, 2009.

[7] 芮勇勤 陈佳艺,丁晓利.基于 InSAR 与 GPS 技术的公路采空区 变形监测 [J].东北大学学报(自然科学版),2010,31(12): 1773-1776.

Rui Yongqin ,Chen Jiayi ,Ding Xiaoli. On the deformation monitoring based on integrating InSAR with GPS for expressway/goaf[J]. Journal of Northeastern University (Natural Science) ,2010 ,31 (12) : 1773–1776.

[8] 陈明芳. 高等级道路工程安全性评价与 InSAR 监测、GIS 管理系统研究[D]. 长沙: 长沙理工大学 2007.

Chen Mingfang. The safety of highway road evaluation and InSAR monitoring GIS management system [D]. Changsha: Changsha University of Science & Technology 2007.

[9] 范洪冬. InSAR 若干关键算法及其在地表沉降监测中的应用研究[D]. 徐州: 中国矿业大学 2010.

Fan Hongdong. Study on several key algorithms of InSAR technique and its application [D]. Xuzhou: China University of Mining & Technology 2010.

[10] 李培现,谭志祥,闫丽丽,等.基于支持向量机的概率积分法参数计算方法[J].煤炭学报 2010 35(8):1247-1251.
Li Peixian, Tan Zhixiang, Yan Lili, et al. Calculation method of probability integration method parameters based on support vector machine[J]. Journal of China Coal Society 2010 35(8):1247-1251.

[11] 李凤明 李宏艳 孙维吉. 基于支持向量机的露天矿边坡地表变

形预测[J].煤炭学报 2008 33(5):492-495.

Li Fengming ,Li Hongyan ,Sun Weiji. Forecast of surface deformation of slope of strip mine based on support vector machine [J]. Journal of China Coal Society 2008 33(5):492-495.

- [12] 闫志刚 杜培军,郭达志.矿井涌水水源分析的支持向量机模型
 [J].煤炭学报 2007 32(8):842-847.
 Yan Zhigang ,Du Peijun ,Guo Dazhi. SVM models for analysising the headstream of mine water inrush [J]. Journal of China Coal Society 2007 32(8):842-847.
- [13] Suykens J A K ,Vandewalle J. Least squares support vector machines classifiers [J]. Neural Network Letters ,1999 ,19(3): 293-300.
- [14] Peng Xinjun ,Wang Yifei. A normal least squares support vector machine(NLS-SVM) and its learning algorithm [J]. Neurocomputing 2009 72: 3734-3741.
- [15] Guo Zhiwei ,Bai Guangchen. Application of least squares support vector machine for regression to reliability analysis [J]. Chinese Journal of Aeronautics 2009 22(2):160-166.
- [16] 邢永忠. 最小二乘支持向量机的若干问题与应用研究 [D]. 南京: 南京理工大学 2009.

Xing Yongzhong. On issues and applications for least squares support vector machine [D]. Nanjing: Nanjing University of Science and Technology 2009.

[17] 王正帅 邓喀中.老采空区残余沉降的离散灰色预测模型[J].煤炭学报 2010 35(7):1084-1088.

Wang Zhengshuai ,Deng Kazhong. Discrete grey prediction model of old goaf residual subsidence [J]. Journal of China Coal Society, 2010 35(7):1084–1088.

 [18] 张安兵 高井祥 张兆江.老采空区地表沉陷混沌特征及时变规 律研究[J].中国矿业大学学报 2009 38(2):170-174.

> Zhang Anbing ,Gao Jingxiang ,Zhang Zhaojiang. Chaotic characteristics and time-variable law of surface subsidence of goaf [J]. Journal of China University of Mining & Technology ,2009 ,38 (2): 170-174.