您可能感兴趣的文章、专题:

- 盘点《煤炭学报》2020年热点论文
 - 《煤炭学报》2021年第1期
 - "新锐科学家"专题

1

- "深部岩体力学与开采理论"专题
- "煤加工与洁净化工技术"专题
- "黄河流域矿区生态保护与可持续发展"专题
- "煤矿热动力灾害防控技术与装备"专题
- "煤矿快速智能掘进理论与技术"专题
- "煤系天然气聚集理论与勘探开发技术"专题
- "低品质煤浮选过程强化"专题

富锂煤层碎屑物源探讨

——以平朔矿区安家岭煤矿太原组煤层为例

成贤康^{1,3},孙蓓蕾^{1,3},刘 超^{1,3},曾凡桂^{1,3},解锡超^{2,3},畅向东^{1,3}

(1. 太原理工大学 矿业工程学院,山西 太原 030024; 2. 山西省地质矿产研究院,山西 太原 030001; 3. 煤与煤系气地质山西省重点实验室,山 西 太原 030024)

摘 要:平朔矿区安家岭煤矿太原组煤层中 Li, Al 等有益元素的富集主要受陆源碎屑的影响,为明确其物源区,以煤层顶、底板和夹矸样品为研究对象,利用岩石薄片、ICP-OES、ICP-MS 等方法对 4,8,9 和 11 号煤层的顶底板和夹矸的岩石学和地球化学特征进行分析,进而探讨了其物源属性。 岩石学结果表明,研究区砂岩样品中碎屑成分以石英和岩屑为主,杂基含量低,胶结类型主要为钙 质胶结。地球化学结果显示,研究区样品主要成分为 SiO₂ 和 Al₂O₃,其他元素的含量都比较低。微 量元素 Li 在各个煤层顶底板和夹矸中的富集系数变化较大,其中 11 号煤层样品中 Li 富集程度最 高,9 号煤层样品中相对富集,8 号煤层样品中表现为相对亏损,4 号煤层 3 个样品中仅有夹矸样品 富集,顶底板样品均不富集。其余微量元素表现为 Th,Hf,Zr 和 Nb 等相对富集,Co,Sc,Cr,Ni,V, Rb,Cs 和 Ga 等元素相对亏损。根据元素质量分数比值等地球化学参数和 SiO₂-TiO₂,Hf-La/Th, ∑REE-La/Yb,Dickinson 图解及 DF_{(A-P)MT} 图解,结合区域地质背景,研究区富 Li 和不富 Li 的煤层 顶底板和夹矸中碎屑物质主要来源于华北北缘的内蒙古隆起。这 2 类煤层顶底板和夹矸的源岩类 型都是以长荚质火成岩为主。相较于富 Li 煤层顶底板和夹矸,不富 Li 煤层样品的源岩中有更多 沉积岩的加入。

关键词:平朔矿区;安家岭煤矿;富锂煤层;地球化学特征;物源

中图分类号:P595;P588.21 文献标志码:A 文章编号:0253-9993(2021)07-2346-14

Provenance of debris in lithium-rich coal seam : A case study of Taiyuan group coal seam in Anjialing Coal Mine, Pingshuo mining area

CHENG Xiankang^{1,3}, SUN Beilei^{1,3}, LIU Chao^{1,3}, ZENG Fangui^{1,3}, XIE XiChao^{2,3}, CHANG Xiangdong^{1,3}

(1. Department of Earth Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China 2. Institute of Geology and Mineral Resources of Shanxi Province, Taiyuan 030001, China; 3. Shanxi Key Laboratory of Coal and Coal Measure Gas Geology, Taiyuan University of Technology, Taiyuan 030024, China)

Abstract: The enrichment of beneficial elements such as Li and Al in the Taiyuan Formation of Anjialing coal mine, Pingshuo mining area, are mainly affected by terrigenous clastics. In order to clarify the prove-nance, thin section, ICP-OES and ICP-MS were used to analyze the petrological and geochemical charac-teristics of roof, floor and gangue of No. 4,8,9 and 11 coals. The petrological results show that the clastic components in the samples are mainly quartz and rock debris, the content of miscellaneous bases is low, and the type of cementation is mainly calcareous cement. Geochemical results show that the main components of the samples are SiO₂ and Al₂O₃, and the content of other elements

引用格式:成贤康,孙蓓蕾,刘超,等. 富锂煤层碎屑物源探讨——以平朔矿区安家岭煤矿太原组煤层为例[J]. 煤炭学报,2021,46(7):2346-2359.

CHENG Xiankang, SUN Beilei, LIU Chao, et al. Provenance of debris in lithium-rich coal seam: A case study of Taiyuan group coal seam in Anjialing Coal Mine, Pingshuo mining area [J]. Journal of China Coal Society, 2021, 46 (7):2346-2359.

移动阅读

收稿日期:2021-01-12 修回日期:2021-05-12 责任编辑:韩晋平 DOI:10.13225/j. cnki. jccs. 2021.0071 基金项目:国家自然科学基金资助项目(41802184,U1810202,41802193)

作者简介:成贤康(1995—),男,山西介休人,硕士研究生。E-mail:849338178@ qq. com

通讯作者:孙蓓蕾(1984—),女,山西曲沃人,副教授,博士。E-mail:sunbeilei@tyut.edu.cn

is relatively low. The enrichment coefficient of the trace element Li in the roof and floor and the gangue of each coal seam varies greatly. Among them, the No. 11 coal seam sample has the highest concentration of Li, the No. 9 coal seam sample is relatively enriched, and the No. 8 coal seam sample is relatively depleted, in the 3 samples of No. 4 coal seam, only the gangue sample is enriched, and the roof and floor samples are not enriched. The remaining trace elements relatively enriched are Th, Hf, Zr, and Nb, while Co, Sc, Cr, Ni, V, Rb, Cs, and Ga are relatively depleted. According to geochemical parameters, such as element ratios and SiO₂-TiO₂, Hf-La/Th, Σ REE-La/Yb, Dickinson diagrams and DF_{(A-P)MT} diagrams, combined with the regional geological background, they are interpreted that the debris in the Li-rich and non-Li coal seams in the study area are mainly originated from the Inner Mongolia uplift of the northern margin, North China. The source rock types of the roof, floor and gangue samples are mainly felsic igneous rocks. Compared with the roof, floor, and gangue of the Li-rich samples, there are more sedimentary rocks debris in the source rock of the non-Li coal seam.

Key words: Pingshuo mining area; Anjialing Coal Mine; lithium-rich coal seam; geochemical characteristics; provenance

近年来的研究发现在华北北部石炭—二叠纪煤 层中,存在 Li, Al, Ga, REE 等多种关键金属富集现 象,如山西宁武煤田煤中铝、锂、镓及稀土等元素富 集,是煤型关键金属潜在有利区^[1]。平朔矿区位于 宁武煤田北部,其煤炭总储量达130亿t,安家岭煤矿 9号煤中锂元素质量分数达60.4×10⁻⁶~840.1×10⁻⁶, 形成了超大型煤型锂矿床^[2-3]。SUN等^[4]通过 SCEP,SEM-EDS,XRD 等方法对山西宁武煤田平朔 等多个矿区太原组煤中超常富集的 Al-Li-Ga 多金 属成矿的成因机制进行了深入剖析,研究认为其 中Li,Ga和Al富集与无机质有关,高岭石等硅酸盐 矿物可能是Li,Ga和Al的载体,他们还认为这些元 素的富集属于陆源型成因,来源于阴山古陆。刘蔚阳 等^[5]通过运用相关性分析、XRD、逐级化学提取等方 法对山西宁武煤田中南沟煤矿和大恒煤矿的多个煤 层中 REE 富集的成因及赋存状态进行了探讨,研究 发现煤中稀土元素主要赋存在硅铝酸盐等矿物中,属 于无机来源且物源主要来自于华北板块北缘的阴山 古陆。王金喜^[6]运用相关性分析、逐级化学提取等 方法对宁武煤田石炭二叠系各矿区煤中 Li 的赋存状 态与沉积控制模式进行研究,发现煤中 Li 主要以硅 酸盐矿物赋存为主,Li的富集为陆源控制型且最初 来源来自于北部阴山古陆。虽然对宁武煤田煤中 Al-Li-Ga-REE 多金属成矿的成因机制进行了探究, 且发现不同煤层 Li 等关键金属的富集程度及元素富 集组合存在较大的差异,但对导致这种差异的原因没 有深入系统的分析。在煤层剖面中,可以发现在夹矸 附近的煤层 Li 富集程度高,系统分析煤层中夹矸的 母岩类型及其构造背景,可能是认识这一问题的途 径。因此,笔者以安家岭煤矿晚古生代太原组煤层中 19个煤层顶、底板和夹矸为研究对象,进行岩石学、

地球化学分析,试图揭示富锂与非富锂煤层碎屑物质 母岩类型及构造背景,从而为煤中 Li 的富集机制及 成矿规律的认识奠定基础。

1 区域地质背景

宁武煤田位于山西省北部,面积约2760 km²,分 为4个矿区:平朔、朔南、轩岗和岚县矿区(图1)。宁 武煤田在地质上形成于宁武盆地,宁武盆地在大地构 造上处于比较特殊的地理位置,其东侧为五台山复背 斜,西部为芦芽山复背斜,北部为桑干河地堑,西南紧 邻吕梁山隆起^[9]。宁武盆地呈北东—南西条带展布, 以古、中生代地层组成的向斜构造为主。盆地基底为 早前寒武纪变质岩系,其核部由侏罗纪地层组成,两翼 依次出露三叠系、二叠系、石炭系、奥陶系和寒武系及 前寒武系,缺失泥盆系与志留纪系,两翼地层产状较 陡^[10]。平朔矿区位于宁武盆地北部,区内晚生代含煤 地层包括本溪组、太原组和山西组,其中山西组和本溪 组仅见少量煤线,太原组为矿区内主要含煤地层,太原 组厚度 63~117 m,平均厚度 90 m,煤层总厚度 32 m。 主采4号、9号和11号煤层,含煤系数高达36.5%。除 煤层外,岩性以黄绿色砂岩、灰色泥岩为主,含少量灰 岩。其中 4-1 号煤层厚 9.16 m,8 号煤层厚 3.14 m,9 号煤层厚度 2.4~36.5 m,平均厚度为 13.45 m^[11],11 号煤层厚度 0~8.7 m,平均厚度为 3.61 m。

2 样品与实验方法

在平朔矿区安家岭煤矿按照标准 GB482—2008 进行分层刻槽取样,共采集了太原组 4-1 号、8 号、9 号、11 号煤层的 19 件样品,包括 7 件煤层顶底板样 品,12 件煤层夹矸(图 2),其中 8 号煤层底板因岩芯 钻取过程中发生了损失,剩余样品量不足以进行测

图1 山西省安家岭煤矿地理位置^[7-8]

Fig. 1 Geographical location of Anjialing Coal Mine in Shanxi Province^[7–8]

试。其中4-R为灰白色含砾中砂岩,取样厚度度 0.08 m;4-J1 为灰黑色泥岩,取样厚度度 0.03 m;4-F为含黄铁矿灰色泥岩,取样厚度度 0.06 m;8-R 为 灰黑色泥岩,取样厚度度 0.05 m;9-R 为灰白色中砂 岩,取样厚度 0.09 m;9-J1 为含方解石薄膜灰黑色泥 岩,取样厚度 0.11 m;9-J2 为灰黑色泥岩,取样厚度 0.11 m;9-J3 为灰黑色泥岩,取样厚度 0.03 m;9-J4 为含方解石脉灰黑色泥岩,取样厚度 0.02 m;9-J5 为 灰黑色泥岩,取样厚度 0.07 m;9-J6 为灰黑色泥岩, 取样厚度 0.06 m:9-J7 为含黄铁矿灰黑色泥岩,取样 厚度 0.06 m;9-J8 为灰色泥岩,取样厚度 0.06 m;9-F为含方解石灰色细砂岩,取样厚度 0.1 m;11-R 为 灰黑色泥岩,取样厚度 0.04 m:11-J1 为灰黑色泥岩, 取样厚度 0.04 m; 11-J2 为灰黑色泥岩, 取样厚度 0.05 m;11-J3 为灰黑色泥岩,取样厚度 0.03 m;11-F 为灰白色细砂岩,取样厚度 0.16 m。

送样前,对样品进行预处理,流程如下:先使用地 质锤对样品进行粗碎,后将碎样放入玛瑙研钵中进行 细碎,手工磨至 200 目,保存于聚乙烯塑料自封袋中, 并进行编号、称重。所有样品进行主量元素、微量元 素(包括稀土元素)测试,所有测试在南京聚谱检测 科技有限公司完成。主量元素测试采用安捷伦公司 5110型ICP-OES,测试相对标准偏差小于 1%,实验 采用美国地质调查局安山岩标准物质 AG-2 和美国 地质调查局玄武岩标准物质 BHV0-2 作质量监控, 样品编号遇尾号为5 的样品做平行样一次,保证实验 流程的稳定性;微量元素(包括稀土元素)采用 ICP-MS 方法进行测试,美国地质调查局 USGS 地球 化学标准岩石粉末(玄武岩 BIR-1,BHVO-2,BCR-2、安山岩 AGV-2、流纹岩 RGM-2、花岗闪长岩 GSP- 2)被当做质控盲样。样品编号逢尾号为9的样品做 平行样一次,保证实验流程的稳定性。

由于砂岩结构稳定,含大量砂级陆源碎屑,有效 保存了物源区的信息。因此选取 4-R,9-R,9-F 和 11-F 等 4 件砂岩样品制作岩石薄片,同一件样品制 作两块岩石薄片,编号分别为 A,B,如 4-R-A,4-R-B。在偏光显微镜下采用 Gazzi - Dickinson 点计数 法^[12]进行碎屑成分的统计,每个薄片统计 500 个点 左右。统计内容具体见表 1。

表 1 砂岩薄片统计内容及描述 Table 1 Statistical content and description of sandstone

统计内容	描述
石英 Qt 颗粒总数	包括单晶石英 Qm 和多晶石英 Qp
多晶石英 Qp	包括燧石和石英岩等颗粒
长石 F 总数	包括斜长石 P 和钾长石 K
不稳定岩屑L总数	包括火成岩岩屑 Lü、沉积岩岩屑 Ls 和变 质岩岩屑 Lm
总岩屑 Lt	包括不稳定岩屑 L 和多晶石英 Qp

3 实验结果

3.1 岩石学特征

对砂岩样品 4-R,9-R,9-F,11-F 进行碎屑成分 统计(表 2)和部分图像如图 3 所示。4-R 砂岩碎屑 成分以石英和岩屑为主,局部可见褐铁矿碎屑。砂岩 粒径主要分布在 0.50~0.25 mm,分选差,磨圆度差, 以次棱角-棱角为主,颗粒间接触多以缝合线接触。 石英主要为单晶石英,颗粒表面洁净明亮,多具均一 消光,多晶石英以燧石为主。岩屑颗粒主要以火成岩

成贤康等:富锂煤层碎屑物源探讨——以平朔矿区安家岭煤矿太原组煤层为例

2349

地	层系统		深度/							
系	统	组	m	柱状	标志层		柱状	标志层	采样点	样品号
			17.7 27.7 - 37.7 -			顶板	- * -	4-1号煤	顶板 夹矸	4-R 4-J1
	Ŧ		47.7 - 57.7 - 67.7 -					4-2号煤	底板	4-F
二 叠 系	「二叠统	山 西 组	97.7 - 107.7 -	····· ···· ····· ····· ····						
			117.7 - 127.7 - 137.7 - 147.7 - 157.7 -							
石炭系	上石炭统	太原组	167.7 - 177.7 - 187.7 - 197.7 - 207.7 -		4-1号煤 4-2号煤 8号煤					
	->0		217.7 -		9号煤				顶板	8-R
			227.7 - 237.7 -	 	11号煤	Γ ₁	•• × ••	8号煤 9号煤	项板 夹矸 夹矸	9-R 9-J1 9-J2
									夾矸 夹矸	9-J3 9-J4
							···★···		夹夹夹夹底	9–J5 9–J6 9–J7 9–J8 9–F
								11号煤	顶板	11-R
						底板			夹开 夹开 来 析 板	11-J1 11-J2 11-J3 11-F

图 2 安家岭煤矿地层柱状及采样层位

Fig. 2 Stratigraphic column of Anjialing coal mine and Sampling location

为主。9-R 砂岩碎屑成分以岩屑和石英为主。砂岩 粒径主要分布在 0.10~0.25 mm,分选较差,磨圆度 较差,以次棱角状为主,杂基含量低,颗粒接触多以缝 合线接触,局部交代砂级碎屑。岩屑主要是火成岩岩 屑为主。9-F 砂岩碎屑成分以岩屑和石英为主,可见 少量云母碎屑,填隙物为黏土杂基和钙质胶结物。砂 岩粒径主要分布在 0.01~0.05 mm,分选较好,磨圆 度较差,以次棱角-亚圆形为主,颗粒接触多以缝合 线接触。岩屑主要是火成岩岩屑。11-F 砂岩碎屑成 分以石英和岩屑为主。砂岩粒径主要分布在 0.05~ 0.10 mm,分选较差,磨圆度较差,以次棱角-亚圆形 为主,颗粒间接触多以点接触。以上特征表明,研究

学

报

煤炭

2021 年第 46 卷

表 2 煤层砂岩的碎屑组成 Table 2 Detrital components of sandstone in coal seams

样日早			实测的硬	卒屑颗粒数	位量/个			计算的碎屑组成占比/%					
1十四 5 一	Qm	Qp	F	Lü	Ls	Lm	总量	Qm	Qp	F	Lü	Ls	Lm
4-R-A	182	118	12	89	68	21	490	37.14	24.08	2.45	18.16	13.88	4.29
4-R-B	165	99	19	101	58	17	459	35.95	21.57	4.14	22.00	12.64	3.70
9-R-A	157	218	93	106	79	13	666	23.57	32.73	13.96	15.92	11.86	1.95
9-R-B	204	126	48	129	84	21	612	33.33	20. 59	7.84	21.08	13.73	3.43
9-F-A	134	161	69	91	62	30	547	24.50	29.43	12.61	16.64	11.33	5.48
9-F-B	172	142	52	102	55	25	548	31.39	25.91	9.49	18.61	10.04	4.56
11-F-A	224	53	13	130	79	5	504	44.44	10. 52	2.58	25.79	15.67	0. 99
11-F-B	272	67	26	103	99	15	582	46.74	11.51	4.47	17.70	17.01	2.58

4-R为4-1号煤层顶板; 9-R为9号煤层顶板; 9-F为9号煤层底板; 11-F为11号煤层底板;
 (+)为单偏光; (-)为正交偏光; Pl为斜长石; Kl为钾长石; Mi为微斜长石

图 3 安家岭煤矿太原组煤层夹矸和顶底板砂岩显微照片

Fig. 3 Micrographs of coal seam gangue and sandstone of roof and floor of Taiyuan Formation in Anjialing Coal Mine

区岩性为砂岩的夹矸碎屑都未经长距离搬运,反 映为近源快速沉积^[13]。总之,砂岩样品中的岩屑 主要以火成岩岩屑为主,含部分沉积岩岩屑和变 质岩岩屑。

3.2 地球化学特征

3.2.1 主量元素特征

表 3 列出了样品元素质量分数测试结果,可以看出,研究区样品主要成分为 SiO₂ 和 Al₂O₃,其他元素

2351

%

的质量分数都比较低。SiO₂ 质量分数最高且变化范 围大,为 25.39%~83.44%,平均为 43.33%,表明样 品中含石英或含硅质物质量分数较高。Al₂O₃ 质量 分数次之,为7.93%~39.38%,平均为 28.89%,说明 样品含有较多的长石及黏土矿物,这与镜下观察的结 果一致。TiO₅为 0.47%~2.18%,平均为 0.90%; Fe_2O_3 为 0.06% ~ 12.80%, 平均为 2.30%; MgO 为 0.04% ~ 0.92%, 平均为 0.18%; P_2O_5 为 0.02% ~ 0.11%, 平均为 0.04%; K_2O 为 0.02% ~ 2.45%, 平均为 0.52%; Na_2O 为 0.01% ~ 0.12%, 平均为 0.05%。 K_2O 质量分数明显高于 Na_2O 质量分数,说明顶底板 和夹矸中长石组分主要为钾长石。

表 3 样品主量元素分析结果 Table 3 Test results of major elements in samples

煤层 木 4-1号 8号 9号 	投口旦	1 毕州												
沐云	件吅写	石住	Al ₂ O ₃	CaO	$\mathrm{Fe_2O_3}$	K20	MgO	MnO	Na ₂ O	P_2O_5	TiO_2	SiO_2		
	4-R	S	7.93	0.838 00	1.940 0	0.5890	0.062 4	0.012 200	0.0303	0.028 2	0.472	83.4		
4 1 旦	4-J1	М	30.60	0.057 80	0.3590	0.0914	0.135 0	0.001 370	0.1100	0.016 3	0. 659	34.3		
4-1 5	4-F	М	35.40	0.073 30	0.792 0	0.671 0	0.227 0	0.001 000	0.045 5	0.0497	1.100	44.1		
	平均		24.60	0.323 00	1.030 0	0.450 0	0.142 0	0.004 860	0.061 9	0.031 4	0. 744	53.9		
8号	8-R	М	24. 10	0. 763 00	2.950 0	2.450 0	0. 916 0	0.026 700	0. 116 0	0.100 0	0.714	54.9		
	9-R	S	27.00	0.678 00	4.3100	1.050 0	0.467 0	0.090 500	0.046 4	0. 113 0	1.020	51.4		
	9-J1	М	38.40	0.042 60	0.306 0	0.249 0	0.092 9	0.001 010	0.075 0	0.033 4	0.824	42.4		
	9-J2	М	39.40	0.031 50	0.367 0	0.265 0	0.0914	0.001 010	0.086 0	0.042 4	1.250	39.8		
	9-J3	М	37.10	0.023 10	0.059 3	0.047 5	0.0397	0.001 020	0.0277	0.017 5	0. 503	43.6		
	9-J4	М	36.50	0.042 20	0.072 2	0.284 0	0.063 5	0.000 996	0.023 8	0.018 5	0.550	42.8		
9号	9-J5	М	23.70	0.052 30	0.074 0	0.147 0	0.080 6	0.000 531	0.0267	0.018 7	0.431	27.3		
	9-J6	М	20.40	0.099 60	1.840 0	0.311 0	0.114 0	0.004 410	0.016 0	0.032 0	0. 993	28.7		
	9-J7	М	17.60	0.088 40	12.800 0	0.300 0	0.0979	0.015 100	0.012 0	0.039 6	0.842	25.4		
	9-J8	М	30. 80	0.085 20	2.5200	0.687 0	0.221 0	0.005 890	0.026 3	0.055 8	0.960	44.0		
	9-F	S	29.30	0.103 00	1.470 0	1.100 0	0.258 0	0.006 330	0.0500	0.031 9	0.740	51.3		
	平均		30.00	0. 125 00	2.380 0	0.444 0	0.153 0	0.012 700	0.039 0	0.040 3	0.811	39.7		
	11-R	М	25.90	0.611 00	12.800 0	0.678 0	0.189 0	0.043 300	0.020 2	0.048 5	0. 520	37.6		
	11-J1	М	30.60	0.043 20	0.112 0	0.275 0	0.0937	0.000 720	0.037 5	0.039 8	2.180	36.0		
	11-J2	М	30.90	0.004 08	0.055 5	0.017 4	0.059 4	0.001 020	0.029 0	0.023 5	2.010	35.5		
11 岁	11-J3	М	36.10	0.005 10	0.1070	0.063 5	0.092 0	0.001 030	0.036 0	0.015 6	0.571	42.4		
	11-F	\mathbf{S}	27.30	0.026 20	0.765 0	0.5100	0.051 5	0.001 810	0.034 7	0.022 6	0.735	58.7		
	平均		30. 20	0.138 00	2.770 0	0.309 0	0.097 1	0.009 580	0.031 5	0.030 0	1.200	42.0		

注:S为砂岩;M为泥岩。

3.2.2 微量元素特征

所有样品微量元素质量分数和上地壳微量元 素质量分数标准化蛛网如表 4 和图 4 所示。煤层 顶底板和夹矸样品中微量元素 Zr 质量分数相对较 高,平均值达到了 100×10⁻⁶ 以上。与大陆上地壳 平均值相比^[14],其中 Li 的富集程度最高且富集系 数变化较大,富集系数在 0.02~26.25,平均值为 7.50。除了 4-R,4-F,8-R 和 9-R 四件样品以 外,其他样品均表现为 Li 富集。其中 11 号煤层夹 矸及顶底板 Li 的质量分数最高,最高可达 551× 10⁻⁶,9 号煤层夹矸及顶底板相对富集 Li,富集系 数介于 0.56~19.82,8 号煤层仅有 1 个样品,Li 质量分数很低,为 20.20×10⁻⁶,4 号煤层 3 个样品 中仅有 1 个样品富集 Li,顶底板样品均不富集 Li 元素。所有样品中的 Th,Hf,Zr 和 Nb 等元素富集 系数的均值在 1.03~1.70,表现出相对富集的特 征;Co,Sc,Cr,Ni,V,Rb,Cs 和 Ga 等富集系数的均 值在 0.21~0.89,为相对亏损的元素。

中国煤炭行业知识服务平台 www.chinacaj.net

煤炭

表4 样品微量元素测试结果

学

报

				Ta	ble 4	Test resu	ults of	trace el	ements	in samp	les				10^{-6}
.HE	投口口	LL, JAL							质量分	数					
深层	件面写	石性	Со	Th	\mathbf{Sc}	Hf	Zr	Cr	Ni	V	Rb	Cs	Nb	Li	Ga
	4-R	s	4.400	7.76	1.93	6.31	220	16.90	66.70	28.80	15.800	0.308	9.39	0.37	7.15
4 1 旦	4-J1	М	1.200	11.10	3.12	11.00	369	3.43	13.10	21.20	4.130	0.396	32.20	187.00	17.20
4-1 5	4-F	М	15.600	15.60	4.23	10.50	386	22.00	21.20	58.70	27.700	1.352	22.30	10.30	17.20
	平均		7.070	11.50	3.09	9.27	325	14.10	33.70	36.20	15.900	0. 685	21.30	65.90	13.90
8号	8-R	М	15.000	16.00	8.43	5.30	171	44.20	56.50	120.00	85.90	5.352	15.20	20. 20	20.00
	9-R	s	13.100	13.60	8.64	10.60	388	47.00	33.40	94.90	39.900	2.510	18.80	11.70	20.60
	9-J1	М	1.260	9.84	2.17	7.80	254	11.70	31.10	32.50	2.520	0.156	36.80	238.00	12.50
	9-J2	М	0.506	14.40	2.37	8.04	270	10.90	12.10	48.20	2.430	0.121	41.90	235.00	13.00
	9-J3	М	0.274	2.83	1.07	3.80	116	1.62	6.71	7.78	2.590	0.401	29.70	326.00	8.10
	9-J4	М	0. 521	2.76	1.37	4.54	122	3.56	4.54	12.40	6.080	0.504	25.30	285.00	8.70
9号	9-J5	М	0.162	6. 99	1.77	6.15	177	3.77	2.72	13.00	1.900	0. 193	17.70	416.00	8.71
	9-J6	М	8.500	16.90	4.21	8.62	299	41.60	21.20	113.00	11.300	1.210	21.30	74. 70	13.70
	9-J7	М	8.070	17.20	13.10	6.02	223	37.80	22.30	82.00	9.830	0.994	18.40	105.00	22.10
	9-J8	М	22.000	11.60	5.63	6.95	228	30.80	49.70	48.60	27.800	3.040	18.10	127.00	17.90
	9-F	\mathbf{S}	4.740	5.41	5.65	10.80	402	13.50	20.40	28.20	31.100	1.550	16.30	74.00	17.90
	平均		5.910	10. 20	4.60	7.33	248	20. 20	20.40	48.10	13.500	1.070	24.40	199.00	14.30
	11-R	М	22.700	14.50	8.59	7.37	250	54.30	45.00	86.20	24.600	2.090	14.70	74.80	21.20
	11-J1	М	0. 890	20. 20	7.58	23.30	952	14.40	14.40	99.30	5.890	0.827	2.18	249.00	22.20
11 号	11-J2	М	0.463	7.53	2.52	8.41	298	6.37	3.67	44.70	0. 978	0.113	6.81	329.00	21.70
11 9	11-J3	М	0. 526	1.92	1.25	4.43	135	1.44	26.50	6.09	2.500	0.257	34.10	551.00	10.20
	11-F	s	3.560	8.72	4.44	11.30	398	27.80	33.90	52.40	20.400	4.080	21.10	152.00	13.00
	平均		5.63	10.60	4.88	11.00	407	20.90	24.70	57.70	10.900	1.47	15.80	271.00	17.70

图 4 样品微量元素标准化蜘蛛网(其中 4-R,4-F,8-R 和 9-R 为不富锂煤层)

Fig. 4 Normalized diagram of trace elements of samples (Among them 4-R,4-F,8-R and 9-R are non-lithium-rich coal 由表 5,6 可知,样品 ΣREE 变化范围较大,在 0.67~260.00,均值为106.41。LREE/HREE 均值 为9.89~15.7,(La/Yb) 均值为13~20,轻、重稀 土分馏明显。以球粒陨石标准值[15]进行标准化后 得到 REE 分布模式(图 5),可知:① 同一成因煤分 层中顶底板和夹矸稀土元素配分模式应该相同,大 部分样品曲线变化基本一致,分布曲线在轻稀土处 具有较大斜率,而在重稀土处较为平坦,为明显的 左倾趋势,轻稀土富集,重稀土亏损。但是9号煤 层夹矸 9-J3,9-J4,9-J5 三件样品的稀土元素分布 曲线出现差异,表现为重稀土富集,轻稀土亏损,为 右倾趋势。安家岭太原组9号煤层形成于海陆交 互的环境中,但是这3件样品并未出现 Ce 的异常。 根据 SEREDIN 等^[16]认为可能是受到富含重稀土元 素的碱性内陆水等自然水循环的影响;② δ Ce范围 为 0.94~1.60, Ce 总体无明显异常; ③曲线在 Eu 处有明显的"V"形, Eu存在负异常, 表明稀土元素 主要来源于陆源碎屑^[17]。

2353

				表 5 样品	品稀土元素	测试结果				
			Table 5	Fest results o	of rare ear	th element	ts in samples	5		10
相目	投口口	브쌰				厉	质量分数			
床広	件吅丂	石注	La	Се	Pr	Nd	Sm	Eu	Gd	Tb
	4-R	S	20.60	44.30	4. 77	17.70	2.99	0. 455	2.20	0.31
	4-J1	М	9.09	22.50	1.62	5.48	0.99	0.161	0.81	0.14
4-1 号	4-F	М	49.20	93.40	9.46	34.10	4.79	0.867	3.38	0.42
	平均		26.30	53.40	5.28	19.10	2.92	0. 495	2.13	0. 29
8号	8-R	М	51.70	93.90	9.55	32.50	4.51	0.898	3.45	0. 53
	9-R	S	57.10	110.00	11.7	45.10	7.37	1.360	5.56	0. 82
	9-J1	М	4.22	13.50	1.04	3.45	0.60	0. 127	0.53	0.10
	9-J2	М	4.80	16.10	1.19	3.95	0.70	0.142	0.59	0.11
	9-J3	М	0.06	0.19	0.02	0.082	0.03	0.008	0.05	0.01
	9–.14	М	0. 53	1.23	0.113	0.422	0.10	0.020	0.15	0. 03
9 문	9-15	М	0.23	0.79	0.07	0.274	0.13	0.032	0.32	0.08
	9-I6	M	33 50	78,90	7.43	25.80	4, 45	0.812	3.26	0.44
	9-17	M	57 30	117 00	12 30	45 80	7 88	1 510	6 21	0.94
	9-18	M	43 30	78 10	8 47	30, 50	4 62	0.654	3 15	0.43
)]0 0_F	S	13 10	24 20	2 20	90. 50 8 14	4. 02	0.324	1 40	0. 4.
	 		21 40	44.00	1 16	16 40	2.74	0. 324	2 12	0.20
	一 丁 坷 	м	21.40	44.00	4.40	22, 10	4.12	0. 499	2.12	0. 52
	11-K	M	56.00	117.00	0.30	22.10	4.12	0. 799	5. 57 2. 42	0. 04
11 号	11-J1	M	30.00	117.00	10. 70	37.90	3.17	0.039	5.45	0.40
	11-J2	M	17.90	44.40	3. 12	10. 20	1.56	0. 237	1.09	0.10
	11–J3	M	2.38	6. 32	0.50	1. 76	0.32	0.046	0.24	0. 03
	11-F	s	9.28	19.40	1.94	7.24	1. 34	0. 223	1.06	0.17
	半均		23.30	49.50	4. 55	15.80	2.50	0. 393	1.88	0.30
煤层	样品号	岩性 -					5重分数			
			Dy	Ho	E	r	Tm	Yb	Lu	J
	4-R	S	1.900	0.403	1.2	.90	0.206	1.340	0.206	10.
4-1 号	4-J1	М	0.829	0. 166	0.4	78	0.073	0.476	0.071	4.
	4-F	М	2.060	0. 371	1.0	040	0. 155	1.010	0. 154	9.
0.11	<u>平</u> 玛		1.600	0.313	0.9	36	0. 145	0.942	0. 144	8.
8 亏	8-R	M	3. 330	0. 724	2. 2	200	0. 353	2. 320	0.352	18.
	9-R	5 M	4.600	0.905	2.5	80	0.388	2.530	0. 3/4	23.
	9-J1 9-12	M	0.610	0.113	0.3	57	0.046	0. 292	0.041	2.
	9-J2 9-J3	M	0.075	0.150	0.0	48	0.008	0.060	0.001	2.
	9-14	M	0. 279	0.057	0.1	63	0.026	0. 163	0.024	1.
9号	9-J5	М	0. 575	0.116	0.3	01	0.044	0. 280	0.040	2.
	9-J6	М	2.240	0.396	1.0	20	0. 146	0.922	0.131	8.
	9-J7	М	5.050	0.926	2.4	-90	0.356	2.260	0. 322	22.
	9-J8	М	2.130	0.378	0.9	93	0.137	0.850	0.127	8.
	9-F	S	1.860	0. 414	1.2	40	0. 195	1.260	0. 187	10.
	平均		1.810	0. 345	0.9	50	0. 140	0. 896	0. 131	8.
	11-R	М	4.220	0. 892	2.6	600	0.397	2.490	0.353	23.
	11-J1	М	2.410	0. 444	1.2	20	0.176	1.130	0.175	9.
11 문	11-J2	Μ	0.924	0.175	0.4	80	0.070	0.410	0.062	3.
	11-J3	Μ	0. 228	0.045	0.1	32	0.021	0.132	0.021	1.
	11-F	S	1.130	0. 230	0.6	80	0.105	0.680	0.105	5.
	平均		1.780	0.357	1.0	20	0.154	0.968	0. 143	8.

第7期

样品稀土元素计算结果

报

煤炭学

表 6

2021 年第 46 卷

		Table	6 Calculatio	on results of	rare earth e	lements in samj	ples		
煤层	样品号	岩性	$\Sigma \text{REE}/10^{-6}$	LREE/10 ⁻⁶	HREE/10 ⁻⁶	LREE/HREE	(La/Yb) _N	δEu	δCe
	4-R	s	98.70	90.80	7.86	11.60	11.00	0. 520	1.020
4 1 平	4-J1	М	42.90	39.80	3.04	13.10	13.70	0.535	1.280
4-15	4-F	М	200.00	192.00	8.60	22.30	35.00	0.627	0. 961
	平均		114.00	108.00	6.50	15.70	19.90	0.561	1.090
8号	8-R	М	206.00	193.00	13.30	14. 50	16.20	0.670	0.932
	9–R	S	250.00	233.00	17.80	13.10	10.40	0.624	0.954
	9-J1	М	25.00	22.90	2.04	11.20	10.10	0.675	1.480
	9-J2	М	29. 20	26.90	2.34	11.50	0.71	0.653	1.550
	9-J3	М	0.67	0.39	0. 28	1.40	2.34	0. 597	1.260
	9-J4	М	3.31	2.41	0.90	2.67	0. 59	0.504	1.130
9号	9-J5	М	3. 28	1. 53	1.76	0.87	26.10	0.465	1.500
	9-J6	М	159.00	151.00	8.57	17.60	18.20	0.624	1.130
	9-J7	М	260.00	242.00	18.60	13.00	36.60	0.638	0. 994
	9-J8	М	174.00	166.00	8.20	20. 20	7.48	0.496	0.908
	9-F	S	56.40	50.00	6.82	7.27	12.90	0.670	0.965
	平均		96.10	89.60	6.73	9.88	12.50	0. 595	1.190
	11-R	М	140.00	125.00	15.20	8. 25	8.95	0. 623	0.957
	11-J1	М	237.00	227.00	9.47	24.00	35.50	0.451	1.060
	11-J2	М	80. 80	77.40	3.38	22.90	31.30	0. 528	1.297
日专	11-J3	М	12.20	11.30	0.86	13. 20	13.00	0.488	1.304
	11-F	s	43.60	39.40	4.17	9.46	9.82	0. 553	1.028
	平均		103.00	96.00	6.62	15.60	19.70	0. 529	1.130

samples (Among them 4–R,4–F,8–R and 9–R are non-lithium-rich coal seams)

4 讨 论

4.1 母岩类型

在风化、搬运及成岩过程中,Ca,Na 等元素由于 活动性较强,含量会发生富集或亏损,而另一些主量 元素(如 Al,Ti)由于其氧化物在低温下的低溶解性

而未受影响。因此,主量元素通常用作物源指示 剂^[18]。w(K,O/Al,O,)可以用来确定碎屑岩源区岩 石的成分^[19](w为成分的质量分数)。当w(K₂O/ Al₂O₃)比值在0.4~1.0,说明母岩中含有相当数量的 碱性长石;在伊利石中比值接近于 0.3;在其他黏土 类矿物中比值接近于 0^[20]。研究区煤层夹矸和顶底 板的 w(K,O/Al,O,)平均值相近,均接近于 0,说明母 岩中碱性长石和伊利石含量低,其他黏土类矿物含量 高。由于 Ti 和 Al 很少被风化影响,保存母岩信息良 好,因此w(Al,O₃/TiO₂)也广泛用来推断碎屑沉积物 的来源^[21]。当 w(Al₂O₃/TiO₂)在 3~8, 沉积物物源 可能来自于镁铁质岩石, 而 w(Al, O₃/TiO₂) 在 21~ 70,物源可能来自于长英质岩石^[22-23]。本文所有样 品 w(Al₂O₃/TiO₂)比值为 14.03~66.31,表明以上其 母岩主要来自于长英质岩石。所有不富 Li 样品用红 色标注,在图 SiO₂-TiO₂ 图解中(图 6(a)),不富 Li 样品 4-R,4-F 和 9-R 落入了沉积岩区域,8-R 落入 了火成岩区域。说明不富 Li 煤层样品源岩中有更多 沉积岩的加入。ROSER 和 KORSCH^[24]通过对砂泥

0.909, 判别函数 F₂ = 0.445w (TiO₂) + 0.07 $w(Al_2O_3) - 0.25w$ (Fe₂O₃) - 1.142w (MgO) + 0.438w (CaO) + 1.475w (Na₂O) + 1.426w (K₂O) - 6.861,根据 F_1 - F_2 图解(图 6(b))可以有效区分镁 铁质、中性或长英质火成岩和石英岩沉积岩等物源 区。在 F₁-F₂(图 6(b))图解中,只有 4-1 号不富 Li 样品落在了石英质沉积岩区域,而其他样品都落在了 火成岩区域,这也说明了不富集 Li 煤层样品源岩中 虽然以火成岩为主,但是仍旧存在较大比重的沉积 岩。

Fig. 6 Discrimination diagram for provenance attribute of samples (The ones filled in red are samples that are not enriched in Li) 微量元素在沉积作用过程中含量变化很小,能够 很好地保留成岩物质来源的有关信息,如Zr,Hf,Th 等。因此,微量元素及某些微量元素的比值,如 La/ Th,La/Yb,Cr/Zr,Sm/Nd等,可作为物源判别的理想 对象^[25-28]。由于稀土元素在风化、搬运、沉积及成岩 过程中具有稳定的特性,因此,稀土元素特征是反映 沉积物物源性质的良好标志^[29-32]。Cr 和 Zr 元素主 要反映铬铁矿和锆石的含量,其质量分数比值可以反 映镁铁质和长英质物质对沉积物的相对贡献[33]。研 究区煤层顶底板和夹矸的 w(Cr/Zr) 在 0.01~0.26, w(Cr/Zr)平均值均小于1,说明源区物质以长英质为 主。Th和Sc质量分数比值是最适合物源判别的参 数之一^[34]。研究区样品的 w(Th/Sc)变化较大,比值 人。

在 0.96~6.08,平均值都高于上地壳的 w(Th/Sc)比 值(0.97),表明源区物质以长英质为主。通过 Hf-La/Th(图 6(c))、 Σ REE-La/Yb(图 6(d))图解 可以进一步探究物源的来源问题。将研究区内样品 投入上述图中,从图6(c)可以看出,大多数样品落在 长英质源区附近,一部分样品落在长英质源区的右 侧,表明有古老沉积物的混入;从图 6(d) 可以看 出,Li 富集与 Li 不富集煤层顶底板和夹矸主要落入 花岗岩区域附近。结合砂岩岩屑类型与上述源岩判 别图解,说明研究区晚古生代太原组 Li 富集与 Li 不 富集煤层顶底板和夹矸的母岩岩性均以花岗岩为主, 而 Li 不富集煤层样品的母岩中有更多沉积岩的加

4.2 物源区构造背景

沉积盆地陆源碎屑成分受多种因素控制,其中母 岩区的构造属性对陆源碎屑成分及其空间上的分配 组合起重要作用,故可以通过碎屑组分特征分析构造 属性^[35]。根据对区内碎屑岩的统计分析,利用 Dickinson 的陆相碎屑砂岩 Qt-F-L,Qm-F-Lt 判别模式图 判别物源区的构造环境(图7),结果表明,在 Qt-F-L 源区构造背景判别图解中,所有样品落入再旋回造山 带区域。在Qm-F-Lt 三角图解中,样品都落入过渡 再旋回区域。表明物源区构造环境属于再旋回造山 带。这与晚古生代华北板块受古亚洲洋大洋板块向 南俯冲碰撞,板块北缘转化为安第斯型活动大陆边 缘,内蒙古隆起发生强烈的构造隆升和地壳剥蚀状态 相一致^[36-37]。

图 7 煤层砂岩的 Dickinson 图解(红色填充的为不富集 Li 的样品)

Fig. 7 Dickinson diagram of sandstone in coal seams (The ones filled in red are samples that are not enriched in Li)

ROSER^[38]通过对不同地区已知构造背景的古代 砂岩和泥岩主量元素特征的分析,认为主量元素的 w(K₂O/Na₂O)是反映构造背景的最有效的指标,提 出K₂O/Na₂O-SiO₂构造背景判别图解。样品投点大 部分落在被动大陆边缘和活动大陆边缘区域,少部分 落在岛弧区域(图 8(a))。BHATIA 和 CROOK^[39]通 过对砂岩和泥岩地球化学特征的研究,认为 La, Th,Sc,Zr等不活泼微量元素比较稳定,总结出适用 于砂岩及泥岩样品的 La-Th-Sc 及 Th-Sc-Zr/10 构 造背景判别图解。在图解 La-Th-Sc(图 8(b)),除个 别一些样品偏离外,绝大部分样品落入活动大陆边缘 区和被动大陆边缘区,部分样品落入大陆岛弧区域; 在图解 Th-Sc-Zr/10(图 8(c)),绝大多数样品落在 被动大陆边缘区域和大陆岛弧区域,少数样品落入活 动大陆边缘区域和大陆岛弧区域,少数样品落入活

值得注意的是,VERMA 等^[40]收集了被动大陆边 缘和活动大陆边缘硅质碎屑样品的地球化学资 料(3668个),将数据点投入到K₂O/Na₂O-SiO₂构造 背景判别图解中发现该图不能很好地区分主动大陆 边缘和被动大陆边缘沉积物,该图解主要的缺点是没 有对组成数据进行一致的统计处理,正确性值得商 榷^[41]。在微量元素构造背景 La-Th-Sc 及 Th-Sc-Zr/10 判别图解中也存在同样的问题,其成功率仅在 0%~30%。因此,这些构造背景判别图解未能很好地

区分2种大陆边缘。VERMA 等^[40]基于已知构造环 境数据库,使用等距对比数比变化(ilr)来处理地球 化学数据,利用10种主量元素及6种微量元素构建 出的DF_{(A-P)MT}函数来判别构造主动大陆边缘和被动

Fig. 9 New tectonic background discrimination diagram based on major and trace elements (MT) (The ones filled in

red are samples that are not enriched in Li)

晚古生代时期,古亚洲洋板块向华北板块俯冲, 华北北缘由被动大陆边缘转化为活动大陆边缘,发生 大量岩浆活动^[42-43]。赵越等^[44]对华北克拉通北缘 主要地质事件的研究表明晚古生代时期华北北缘的 内蒙古隆起存在火山活动;张栓宏^[45]通过对北京上 古生界凝灰岩夹层锆石 U-Pb 测年及 Lu-Hf 同位素 分析研究发现这些凝灰岩主要源于华北北缘的内蒙 古隆起,证明当时华北北缘确实存在火山活动,只是 后期被剥蚀殆尽;马收先等[46]通过对冀北-辽西地区 上石炭—中三叠统碎屑岩的研究认为在石炭纪华北 北缘的内蒙古隆起强烈隆升,开始遭受剥蚀,其剥蚀 厚度至少有 15.6 km^[47],为华北内部的盆地提供了大 量的碎屑物质[11]。宁武煤田安家岭煤矿太原组煤层 沉积时,内蒙古隆起处于抬升剥蚀阶段,接受了大量 来自北部内蒙古隆起上的碎屑物质,岩石学和地球化 学结果表明富锂煤层与不富锂煤层夹矸和顶底板中 的碎屑物质主要来源于内蒙古隆起上的长英质火成 岩,相较于富锂煤层夹矸和顶底板,不富锂煤层样品 碎屑物质中有更多沉积岩的加入。

5 结 论

(1)通过煤层顶底板砂岩碎屑组分的观察和统 计,碎屑成分以石英和岩屑为主,杂基含量低,胶结类 型主要为钙质胶结。

(2)通过对研究区 4 号、8 号、9 号和 11 号煤层 顶底板及夹矸样品进行主量元素和微量元素的分析。 其结果显示主量元素主要成分为 SiO₂ 和 Al₂O₃,其他 元素的含量都比较低。微量元素 Li 在各个煤层夹矸 和顶底板的富集系数变化较大,其中 11 号煤层煤层 夹矸和顶底板中 Li 富集程度最高,9 号煤层样品相 对富集 Li,8 号煤层仅有 1 个样品,Li 表现为相对亏 损,4 号煤层 3 个样品中仅有 1 个样品富集 Li,顶底 板样品均不富集 Li 元素。其余微量元素在各个煤层 样品中表现为 Th,Hf,Zr 和 Nb 等相对富集,Co,Sc, Cr,Ni,V,Rb,Cs 和 Ga 等元素相对亏损。轻重稀土 元素分馏明显,稀土元素分布曲线在 Eu 处有明显的 "V"形,Eu 存在负异常,表明稀土元素主要来源于陆 源碎屑。

(3)通过砂岩岩屑类型统计和地球化学结果投 点分析富锂程度不一致的2类煤层夹矸和顶底板中 母岩类型主要为内蒙古隆起上的长英质火成岩,而相 较于富锂煤层顶底板和夹矸,不富锂煤层样品中碎屑 物质的来源还有更多沉积岩的加入。碎屑物质都主 要来自于具活动大陆边缘构造背景的内蒙古隆起。

参考文献(References):

- 刘东娜,曾凡桂,赵峰华,等.山西省煤系伴生三稀矿产资源研究现状及找矿前景[J].煤田地质与勘探,2018,46(4):1-7.
 LIU Dongna,ZENG Fangui,ZHAO Fenghua, et al. Status and prospect of research for three type coal-associated rare earth resources in coal measures in Shanxi Province[J]. Coal Geology and Exploration,2018,46(4):1-7.
- [2] 刘帮军,林明月,褚光琛.山西平朔矿区 4 号煤中镓的分布规律 与富集机理[J].中国煤炭,2014,40(11):25-29.
 LIU Bangjun, LIN Mingyue, CHU Guangchen. Distribution law and enrichment mechanism of Ga in No. 4 coal seam in Pingshuo mining area in Shanxi Province[J]. China Coal,2014,40(11):25-29.
- [3] 衣妹,王金喜.安家岭矿9号煤中锂的赋存状态和富集因素分析
 [J].煤炭与化工,2014,37(9):7-10.
 YI Shu, WANG Jinxi. Lithium occurrences and enrichment factors law in No. 9 coal seam of Anjialing Mine[J]. Coal and Chemical Industry,2014,37(9):7-10.
- [4] SUN Yuzhuang, ZHAO Cunliang, ZHANG Jianya, et al. Concentrations of valuable elements of the coals from the Pingshuo Mining District, Ningwu Coalfield, Northern China [J]. Energy Exploration, 2013,31(5):727-744.
- [5] 刘蔚阳,樊景森,王金喜,等. 宁武煤田煤中稀土元素地球化学 特征研究[J].煤炭科学技术,2020,48(4):237-245.
 LIU Weiyang,FAN Jingsen,WANG Jinxi, et al. Study on geochemical characteristics of rare earth elements from coal in Ningwu coalfield[J]. Coal Science and Technology,2020,48(4):237-245.
 [6] 王金喜. 宁武盆地石炭二叠系煤中锂富集的沉积控制[D]. 徐

州:中国矿业大学,2019:33-110.

WANG Jinxi. Sedimentary control of Lithium enrichment in Permo-Carboniferous coals from Ningwu basin, Shanxi, China [D]. Xuzhou: China University of Mining and Technology, 2019:33-110.

- [7] LIU Bangjun, WANG Junyan, HE Hongtao, et al. Geochemistry of carboniferous coals from the Laoyaogou mine, Ningwu coalfield, Shanxi Province, northern China: Emphasis on the enrichment of valuable elements [J]. Fuel, 2020, 279;118414.
- [8] 李洪颜,徐义刚,黄小龙,等.华北克拉通北缘晚古生代活化:山西宁武—静乐盆地上石炭统太原组碎屑锆石 U-Pb 测年及 Hf 同位素证据[J].科学通报,2009,54(5):632-640.

LI Hongyan, XU Yigang, HUANG Xiaolong, et al. Activation of northern margin of the north China craton in late Paleozoic: Evidence from U–Pb dating and Hf isotopes of detrital zircons from the upper carboniferous Taiyuan formation in the Ningwu-Jingle Basin [J]. Chinese Science Bulletin, 2009, 54(5):632–640.

- [9] 邹雨. 宁武—静乐盆地中生代沉积-构造演化及其后期改造研究
 [D]. 太原:太原理工大学,2017:7-16.
 ZOU Yu. Mesozoic sedimentary-Tectonic evolution and its Late eeformation in Ningwu-Jingle Basin[D]. Taiyuan: Taiyuan University of Technology,2017:7-16.
- [10] 李振宏,董树文,渠洪杰,等. 宁武一静乐盆地侏罗系碎屑岩地 球化学特征及地质意义[J]. 地质论评,2013,59(4):637-655.
 LI Zhenhong, DONG Shuwen, QU Hongjie, et al. Geochemistry of jurassic detrital rocks and geological significance in Ningwu Jingle Basin[J]. Geological Review,2013,59(4):637-655.
- [11] 刘帮军,林明月. 宁武煤田平朔矿区 9 号煤中锂的富集机理
 [J]. 地质与勘探,2014,50(6):1070-1075.
 LIU Bangjun, LIN Mingyue. Enrichment mechanism of lithium in coal seam No. 9 of the Pingshuo Mining District, Ningwu Coalfield[J]. Geology and Exploration,2014,50(6):1070-1075.
- [12] DICKINSON W R. Interpreting detrital modes of Graywacke and Arkose[J]. Journal of Sedimentary Petrology, 1970, 40(2):695-707.
- [13] 李宏. 柴达木盆地北缘新近系油砂山组与狮子沟组沉积环境、 盆地性质[D]. 西安:长安大学,2013:27-33.
 LI Hong. Northern Qaidam Basin Neogene Youshashan with Shizigou sedimentary environment and nature[D]. Xi'an: Chang'an University,2013:27-33.
- [14] RUDNICK R L, GAO S, HOLLAND H D, et al. Composition of the continental crust[J]. The Crust, 2003, 3:1-64.
- [15] TAYLOR S R, MCLENNAN S M. The continental crust; Its composition and evolution [M]. Oxford; Blackwell Scientific Publications, 1985;1-90.
- [16] VVS A, SD B. Coal deposits as potential alternative sources for lanthanides and yttrium [J]. International Journal of Coal Geology, 2012,94(5):67-93.
- [17] 赵志根,唐修义,李宝芳.淮北煤田煤的稀土元素地球化学
 [J].地球化学,2000,29(6):578-583.
 ZHAO Zhigen, TANG Xiuyi, LI Baofang. Geochemistry of rare earth elements of coal in Huaibei Coalfield [J]. Geochimica, 2000, 29(6):578-583.
- [18] PHILLIPS O A, FALANA A O, ADEBAYO A J. The geochemi-

cal composition of sediment as a proxy of provenance and weathering intensity: A case study of Southwest Nigeria's Coastal Creeks [J]. Geology Geophysics and Environment, 2017, 43(3): 229 – 248.

- [19] COX R, LOWE D R, CULLERS R L. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States [J]. Geochimica et Cosmochimica Acta, 1995, 59(14): 2919–2940.
- [20] WRONKIEWICZ D J, CONDIE K C. Geochemistry of Archean shales from the Witwatersr and Supergroup, South Africa: Sourcearea weathering and provenance[J]. Geochimica et Cosmochimica Acta, 1987, 51(9):2401-2416.
- [21] GIRTY G H, RIDGE D L, KNAACK C, et al. Provenance and depositional setting of Paleozoic chert and argillite, Sierra Nevada, California[J]. Journal of Sedimentary Research, 1996, 66 (1): 107 – 118.
- [22] ONANA V L, BOUBAKAR L. Relationships between major and trace elements during weathering processes in a sedimentary context:Implications for the nature of source rocks in Douala, Littoral Cameroon[J]. Geochemistry Interdisciplinary Journal for Chemical Problems of the Geosciences and Geoecology, 2014, 74(4):765-781.
- [23] NGUEUTCHOUA G, EYONG J T, BESSA A, et al. Provenance and depositional history of Mesozoic sediments from the Mamfe basin and Douala sub-basin (SW Cameroon) unraveled by geochemical analysis [J]. Journal of African Earth Sciences, 2019, 158: 103550. 1–103550. 24.
- [24] ROSER B P, KORSCH R J. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data [J]. Chemical Geology, 1988, 67(1-2):1-139.
- [25] BASU A. Evolution of siliciclastic provenance inquiries: A critical appraisal-science direct[J]. Sediment Provenance, 2017:5-23.
- [26] HOSSAIN H M Z, KAWAHATA H, ROSER B P. Geochemical characteristics of modern river sediments in Myanmar and Thailand:Implications for provenance and weathering [J]. Geochemistry, 2017, 77:443-458.
- [27] RODRIGUEZ-CUICAS M E, MONTERO-SERRANO J C, GAR-BAN G. Geochemical and mineralogical records of late Albian oceanic anoxic event 1d(OAE-1d) in the La Grita Member(southwestern Venezuela): Implications for weathering and provenance
 [J]. Journal of South American Earth Sciences, 2019, 97: 102408.
- [28] 沈立建,刘成林,王立成.云南兰坪盆地云龙组上段稀土、微量 元素地球化学特征及其环境意义[J].地质学报,2015,89 (11):2036-2045.

SHEN Lijian, LIU Chenglin, WANG Licheng. Geochemical characteristics of rare earths and trace elements, of the upper Yunlong formation in Lanping basin, Yunnan and its environments significance [J]. Acta Geologica Sinica, 2015, 89(11):2036–2045.

[29] 陈全红,李文厚,胡孝林,等.鄂尔多斯盆地晚古生代沉积岩源 区构造背景及物源分析[J].地质学报,2012,86(7):1150-1162.

2359

CHEN Quanhong, LI Wenhou, HU Xiaolin, et al. Tectonic setting and provenance analysis of Late Paleozoic sedimentary rocks in the Ordos Basin[J]. Acta Geologica Sinica, 2012, 86(7):1150-1162.

[30] 吴赛赛,赵省民,邓坚. 漠河盆地中侏罗统漠河组泥岩元素地球 化学特征及其地质意义:以 MK-3 井为例[J]. 地质科技情报, 2016(3):17-27.

> WU Saisai, ZHAO Shengmin, DENG Jian. Geochemical characteristics of elements of the mudstones in Middle Jurassic Mohe formation in Mohe Basin and their geological implications: A case from drilling hole MK-3[J]. Geological Science and Technology Information, 2016(3):17–27.

- [31] HOSSAIN H, HOSSAIN Q H, KAMEI A, et al. Geochemical characteristics of Gondwana shales from the Barapukuria basin, Bangladesh: Implications for source-area weathering and provenance [J]. Arabian Journal of Geosciences, 2020, 13(3):1-12.
- [32] LU Lu, QIN Yong, ZHANG Kaijun, et al. Provenance and tectonic settings of the Late Paleozoic sandstones in central Inner Mongolia, NE China; Constraints on the evolution of the southeastern Central Asian Orogenic Belt[J]. Gondwana Research, 2020, 77; 111-135.
- [33] 岳跃破,施泽明,倪师军,等.四川壤塘地区岩石地球化学特征及其物源分析[J].四川地质学报,2011,31(2):246-250.
 YUE Yuepo, SHI Zeming, NI Shijun, et al. Lithogeochemistry and material source in the Zamtang Region, Sichuan[J]. Acta Geological Sichuan, 2011,31(2):246-250.
- [34] 白宪洲,何明友,王玉婷,等.四川若尔盖地区西康群地球化学特征及其物源区和古风化程度分析[J].现代地质,2010, 24(1):151-157.

BAI Xianzhou, HE Mingyou, WANG Yuting, et al. On the geochemical characteristics, provenance and paleoweathering degree of Triassic Xikang Group in Ruoergai Area in Sichuan Province[J]. Geoscience, 2010, 24(1):151-157.

[35] 杨仁超,韩作振,樊爱萍,等.鄂尔多斯盆地东南部二叠系碎屑 岩物源分析[J].山东科技大学学报:自然科学版,2007, 26(3):1-4.

> YANG Renchao, HAN Zuozhen, FAN Aiping, et al. Provenance analysis of Clastic rocks in Permian system at southeast area of Ordos Basin[J]. Journal of Shandong University of Science and Technology, 2007, 26(3):1-4.

[36] 邵济安,何国琦,唐克东. 华北北部二叠纪陆壳演化[J]. 岩石 学报,2015,31(1):47-55.

SHAO Ji'an, HE Guoqi, TANG Kedong. Evolution of Permian continental crust in northern part of North China[J]. Acta Petrotogica Sinica, 2015, 31(1):47–55.

[37] 周安朝. 华北地块北缘晚古生代盆地演化及盆山耦合关系 [D]. 西安:西北大学,2000:127-132.

> ZHOU Anchao. The evolution of Late Paleozoic Basins in North Margin of North China Block and the Coupling Relationship between basin and range [D]. Xi'an: Northwest University, 2000: 127–132.

[38] ROSER B P, KORSH R J. Provenance signatures of sandstone-

mudstone suites determined using discriminant function analysis of major-element data[J]. Chemical Geology, 1988, 67(1-2):1-139.

- [39] BHATIA M R, CROOK K A W. Trace element characteristics of greywackes and tectonic discrimination of sedimentary basins [J]. Contributions to Mineralogy and Petrology, 1986, 92 (2): 181-193.
- [40] VERMA S P, ARMSTRONG-ALTRIN J S. Geochemical discrimination of siliciclastic sediments from active and passive margin settings[J]. Sedimentary Geology, 2016, 332(1):1-12.
- [41] PINCUS R, AITCHISON J. The statistical analysis of compositional data[J]. Biometrical Journal, 2010, 30(7):794-794.
- [42] 李孟江,陈衍景,张莉.华北克拉通北缘晚古生代尚义钾质花岗 岩的成因分析:来自岩石地球化学的证据[J].地球化学, 2012(3):33-45.

LI Mengjiang, CHEN Yanjing, ZHANG Li. Genesis of Late Paleozoic Shangyi potassic granite in the northern margin of the north China craton; Petrochemistry evidence[J]. Geochimica, 2012(3); 33– 45.

- [43] 张青伟. 华北板块北缘中段晚古生代花岗岩类特征及其地质意义[D]. 长春:吉林大学,2011:79-83.
 ZHANG Qingwei. Characteristics of Late Palaeozoic granitoids and their geological significances in the Middle segment of North margin of North China plate[D]. Changchun: Jilin University, 2011:79-83.
- [44] 赵越,陈斌,张拴宏,等. 华北克拉通北缘及邻区前燕山期主要 地质事件[J]. 中国地质,2010(4):900-915.
 ZHAO Yue, CHEN Bin, ZHANG Shuanhong, et al. Pre-Yanshanian geological events in the northern margin of the North China craton and its adjacent areas[J]. Geology in China,2010(4): 900-915.
- [45] ZHANG S H,ZHAO Y,SONG B, et al. Zircon SHRIMP U-Pb and in-situ Lu-Hf isotope analyses of a tuff from Western Beijing: Evidence for missing Late Paleozoic arc volcano eruptions at the northern margin of the North China block [J]. Gondwana Research, 2007,12(1-2):157-165.
- [46] 马收先,孟庆任,武国利,等. 内蒙古隆起晚古生代构造隆升的 沉积记录[J]. 地质学报,2014,88(10):1771-1789.
 MA Shouxian, MENG Qingren, WU Guoli, et al. Late Paleozoic exhumation of the Inner Mongolia Paleo-Uplift: Evidences from sedimentary records[J]. Acta Geologica Sinica, 2014,88(10):1771-1789.
- [47] 张拴宏,赵越,刘健,等.华北地块北缘晚古生代—中生代花岗 岩体侵位深度及其构造意义[J].岩石学报,2007,23(3):625-638.

ZHANG Shuanhong, ZHAO Yue, LIU Jian, et al. Emplacement depths of the Late Paleozoic granitoid intrusions from the northern North China block and their tectonic implications[J]. Acta Petrologica Sinica,2007,23(3):625-638.