基于离子液体吸收法的气体分离研究进展

王兰云1,2,李振东1,位亚南1,徐永亮1,2,3,魏建平1,2,3

(1.河南理工大学 安全科学与工程学院,河南 焦作 454003; 2.瓦斯地质与瓦斯控制国家重点实验室培育基地,河南 焦作 454003; 3.煤炭安全生产河南省协同创新中心,河南 焦作 454003)

摘 要:近年来,温室气体减排及利用已成为全球化低碳经济发展的关键问题。化石燃料(煤、石油、天然气等)燃烧以及矿产开采活动所排放的有毒有害气体严重污染大气环境。与此同时,这些气体又是重要的工业生产原料,因此有必要捕捉这些污染气体,并加以分离和再利用。为克服传统有机溶剂和碱液吸收法存在的污染、腐蚀等问题,有“液体分子筛”之称的离子液体(ILs)逐渐成为学者们用来代替传统气体吸收剂的绿色溶剂,由此综述了ILs在气体分离方面的研究进展。分析了影响气体溶解选择性的内外因素以及适用于不同气体混合物分离的ILs结构特征。对于CO2与难溶气体的分离,可在阴、阳离子结构中引入碱性基团(如羧酸类、氨基酸类、非质子型的含氮杂环和酚羟基等),通过强化ILs对CO2的化学吸收能力,提高CO2与难溶气体的吸收分离效果。由于碱性较强ILs对CO2,SO2,H2S都具有化学吸收作用,合理调节ILs碱性强弱和碱性基团位置以弱化ILs与CO2的结合,是提高SO2/CO2及H2S/CO2溶解选择性的有效途径。此外,结构紧凑的相对分子量较低的ILs通常具有较高的理想溶解选择性。通过分子动力学模拟计算,认为混合气体的实际溶解选择性受进气浓度比、ILs含量、温度、压力等因素综合影响。为获得较高的气体溶解选择性应正确选择ILs类型,并确定合理的使用量及操作温度和压力。

关键词:离子液体;气体分离;溶解度;理想选择性;实际选择性

煤矿关闭后,煤层采空区瓦斯压力降低,残煤中部分吸附态瓦斯转变成游离瓦斯存储于地下储气空间。而煤炭开采对顶底板和围岩应力场的扰动作用导致大量裂隙生成,给游离瓦斯提供了良好的渗透通道,形成缓慢持久的地表瓦斯泄漏,不仅加剧温室效应,还浪费了优良的清洁能源。实施废弃矿井瓦斯抽采可有效减少瓦斯的地表无控制泄漏[1]。报废矿井抽采出的煤矿CH4浓度比较高,通常可以达到40%~80%,和常规意义的煤层气一样可用于发电、供热、民用燃气、工业用燃料等方面。但是,随着抽采的持续进行,其中的CH4浓度逐渐下降。当不能满足利用要求时,大多数矿井选择直接排空。尽管低浓度瓦斯发电技术日趋成熟,但是有统计表明低浓度瓦斯(10%)发电所排放的NOx量比高浓度(40%)时增加了1.2~5倍,而且较高浓度瓦斯的最大发电功率为较低浓度瓦斯的10倍[2]。因而对低浓度瓦斯进行捕集分离,不仅能够有效降低污染物排放,还可提高瓦斯利用率,提高发电功率。低浓度瓦斯中除CO2,N2外,另有2%左右的小分子气态烃、H2S,Hg,He,H2O等杂质。CO2的存在会导致瓦斯燃烧热值降低[3],还有可能引起腐蚀、冻堵等问题[4];H2S同样对输送管道具有腐蚀作用,而且燃烧后会产生SO2。因而除重点考虑CO2/N2,CO2/CH4的分离外,还有必要去除H2S等杂质气体以达到净化瓦斯气的目的。

另一方面,钢厂的焦炉煤气、炼油厂的含氢尾气、转炉煤气、燃煤锅炉的烟道气中均不同程度含有CO2,若能将其中的CO2与其余气体(如H2,CO,SOx,NOx等)分离,则有利于将这些公认的污染气体作为重要的工业生产原料进行回收利用,即可实现在减少大气环境污染的同时增加工业生产资源供应的目的。针对这些行业的CO2捕集方法主要有吸收法、吸附法、膜分离法和低温蒸馏法等[5]。常用CO2的物理吸附材料(如多孔碳质材料、沸石、氧化铝、硅胶和金属-有机骨架等),一般成本较低,有较快的吸附速率[6],但吸附容量有限,吸附解吸频繁。膜分离法投资费用低、能耗小、操作弹性大,制备成本低且选择渗透性稳定的膜材料是亟待解决的关键问题[5]。相比之下,溶剂吸收法规模大、能耗低,具有较好的研究和开发潜力,但吸收剂的选择需考虑高效、低腐蚀、低能耗以及性能稳定等因素。化学吸收法对CO2的吸收效果好,分离回收的浓度可达98%以上,但多数化学吸收法所用溶液(如氨水、热钾碱溶液、MEA、DEA、MDEA、AEEA和哌嗪水溶液)存在高挥发、强腐蚀、易污染分离相、再生能耗大等缺陷[7]。因而,低成本的绿色安全捕集与分离成为混合气分离和纯化的关键技术之一。

大多数离子液体(Ionic Liquids,ILs)蒸气压极低,且具有良好的热稳定性、化学稳定性和气体溶解性,被视为可代替传统挥发性溶剂的气体吸收分离剂。图1为不同气体在纯离子液[C4C1im][NTf2]中的亨利常数,表明SO2,H2S和一些大分子烃类气体在该IL中溶解度较高,而H2,O2,N2,CO的溶解度极低。总的来说,不同气体由于结构、极性、酸碱性等差异,在同种离子液中的溶解度存在较大的差别,一般遵循SO2>H2S>CO2≈N2O>气态烃>CO>O2>N2>H2的顺序[8-15]。LEI等对各类气体在纯ILs中的溶解度进行了综述,发现长取代链、低温、高压有利于增加气体在ILs中的溶解度[16]。与研究溶解度不同,溶解选择性则需要考虑同种IL对不同气体溶解度差异大小,分析不同气体的竞争吸收机制,以及温度、压力对溶解选择性的影响。本文将根据纯ILs对各种气体溶解度研究进展,分析ILs对不同气体溶解选择性差异及其影响因素(如ILs结构、温度、压力等),为提高ILs的气体分离率提供设计参考。

图1 近常温下不同气体在[C4C1im][NTf2]中的亨利常数[17-22]
Fig.1 Henry’s law constants of different gases in[C4C1im][NTf2] near ambient temperature[17-22]

1 气体溶解选择性

实际的气体溶解选择性取决于气体A、气体B与IL的三元体系,如式(1)所示[23],其中xAxB是IL相中A或B的摩尔分数,yAyB是气相中A或B的摩尔分数。

(1)

但考虑到单独测定IL中气体组分的难度极大,大多数文献常采用理想溶解选择性来评价吸收剂分离能力。理想溶解选择性为某一特定温度和压力下各纯气体组分在液相中溶解度之比(式(2))。此外,还可表示为式(3)所示一定温度和溶解度下的起泡点压力之比。式(4)则将气体理想溶解选择性简单表示为亨利常数的比值,只需根据溶解度数据拟合计算等温条件下的亨利常数,即可判断溶剂的溶解选择性[24]

(2)

(3)

(4)

式(2)~(4)中所有参数仅适用于单气体-IL二元体系。XAXB是一定压力下溶解在IL中的纯气体A和纯气体B的摩尔分数;PA,PB表示相同温度下IL中的一定量气体A和气体B的起泡压力;KHA,KHB表示相同温度下IL中气体A和气体B的亨利常数。本文中如不做特殊说明,气体溶解选选择性均指式(4)表示的理想选择性。

2 IL气体溶解选择性研究进展

2.1 CO2与难溶气体的分离

2.1.1 CO2与烃类气体

一般ILs自由体积越大,容纳的气体分子数越多,对气体的溶解度越高。但分子体积较大的ILs对气体溶解选择性的影响却并非如此。一般带有大体积阳离子如[P66614]+,[N8881]+和[Cprop]+的ILs对CO2和CH4的溶解性较好,但是选择性常低于14[24]。另有研究表明随着咪唑阳离子上的烷基链长度的增加,在313 K时CO2/CH4选择性按照以下顺序递减:[C2C1im][NTf2](11.45)>[C4C1im][NTf2](10.24)>[C6C1im][NTf2](8.75)[20];[C4C1im][NTf2](11)>[C7C1im][NTf2](8)=[C10C1im][NTf2](8)及[P1C1im][NTf2](13)>[P2C1im][NTf2](12)=[P3C1im][NTf2](12)[25]。可见相对分子量较小的ILs具有较好的气体选择性。但当取代链的长度达到一定程度时,由于在ILs分子体积足够大的情况下,CO2-ILs间色散力远远强于CO2-ILs间静电作用力,CO2、CH4在ILs中的溶解度均取决于ILs的分子体积大小,导致选择性趋于定值。由此可见,与增加气体溶解度不同,分子体积较小的ILs常常表现出优良的CO2/CH4选择溶解能力。另一方面,难溶性气体的溶解度取决于ILs分子的自由空间体积,而CO2溶解度则是分子自由体积、极性、碱性以及氢键共同作用的结果。因此,提高CO2/CH4溶解选择性应综合考虑ILs的极性、碱性和自由体积大小。

极性较高的ILs,如[2mHEA][Prop],[C4C1im][CH3SO3],[C4C1im][CH3SO4],[C1C1im][CH3SO4]和[C2C1im][CH3OHPO2],通常具有较高的CO2/CH4的吸收选择性,分别为91.4(293.15 K),46.7(353.15 K),35(303.15 K),34.6(298.15 K)和24.91(298.15 K)[26]。但极性并非提高CO2/CH4选择性的必要条件,例如:[HOC2C1im][BF4]在压力为0.5 bar的选择性为4.35,远远低于[C4C1im][BF4]的11.86[27]。这主要因为[HOC2C1im][BF4]阳离子中羟基的引入使得阴-阳离子间作用力增强,而[HOC2C1im][BF4]与CO2作用力减弱,从而导致CO2溶解度减少所致。

由于F原子的强负电性可增强ILs与气体之间的静电吸引力,因而氟化ILs的气体溶解性通常高于非氟化的同类ILs。尽管如此,部分传统的氟化ILs的CO2/CH4溶解选择性却低于非氟化的ILs。图2显示了大多数含氟阴离子的ILs相对分子量较大且选择性较低,而相对分子量较小的不含氟ILs(主要为硫酸阴离子、硫氰酸类阴离子、羧酸类阴离子)的气体选择性普遍较高。

图2 温度为313.15 K时氟化及非氟化ILs的CO2/CH4理想溶解选择性[8,20,24,26-33]
Fig.2 CO2/CH4 ideal selectivity in fluorine containing and fluorine free ionic liquids at 313.15 K[8,20,24,26-33]

除考虑ILs结构和性质外,温度对不同气体溶解的影响不尽相同。例如,有研究认为CO2溶解度通常随温度升高而降低,而CH4溶解度却有所增加[30]。因而对于同种IL,合适的温度能够明显提高CO2/CH4溶解选择性。图3为313.15 K以及293~303 K时不同ILs的CH4/CO2溶解选择性,结果显示在313.15 K时大多数ILs的选择性均低于20,表明较高温度并不利于CO2和CH4的吸收分离。这一规律在CO2与N2,O2,H2等难溶气体的分离结果中也有体现。

图3 CO2/CH4溶解选择性随温度及ILs相对分子量的变化规律[8,20,26-33]
Fig.3 CO2/CH4 selectivity with molecular weights at different temperature ranges[8,20,26-33]

除CH4外,不少学者还报道了ILs对瓦斯中存在的少量C2H6,C2H4,C3H8,C3H6等烃类气体的捕集和分离。图4为C2H4与CO2的分离情况,结果显示羧酸类及氰类ILs对CO2/C2H4选择性高于同相对分子量的氟化ILs。如[C4Clim][C15H31COO]和[C4Clim][C17H35COO]在318 K时的CO2/CH4选择性高达10[35],而氟化阴离子的ILs的溶解选择性范围仅为1~4。

图4 氟化及非氟化ILs的CO2/C2H4溶解选择性(283.15~318.15 K)[31,34-37]
Fig.4 Ideal selective CO2/C2H4 from other light hydrocarbons by imidazolium ionic liquids from 283.15 K to 318.15 K[31,34-37]

另有文献报道发现目前常用的咪唑类ILs对烯烃的溶解能力强于相应的烷烃[37],因而这些ILs从烷烃中分离CO2的能力一般高于对应的烯烃(图5所示),如[C4Clim][PF6],[C4Clim][NTf2]和[C2Clim][NTf2]对CO2/C2H6的选择性高于CO2/C2H4[31,36-37],该规律也同样出现在CO2与C3H8,C3H6的分离,以及CO2 与C4H10,C4H8的选择性吸收结果中。大分子的C4H8和C4H10与ILs间较强的色散力使得两者在ILs中溶解度明显高于CH4和CO2,因而这些大分子的气态烃与CO2在ILs中的溶解选择性均小于1。

图5 咪唑类ILs中的CO2/CxHy溶解选择性随相对分子量变化规律(283.15~318.15 K)[19,31,36-38]
Fig.5 Ideal selective CO2 absorption from other light hydrocarbons by imidazolium ionic liquids from 283.15 to 318.15 K[19,31,36-38]

2.1.2 CO2与N2O

己二酸和硝酸生产过程中会排放含有CO2和N2O的尾气,这两种气体同为温室气体,而且气体分子大小、四极距大小几乎相等,物理性质极其相似[39]。N2O的偶极矩为0.2 D,极性略高于CO2(偶极矩为0),且两种气体在ILs中的溶解度相近,溶解选择性仅为1~2(表1),因此仅通过物理吸收难以有效分离CO2和N2O。由于CO2显弱酸性,因而可通过调节ILs酸碱性或引入碱性基团的办法显著提高CO2/N2O理想溶解选择性。表1中所列[C4C1im][C1CO2]的CO2/N2O溶解选择性高达405.19,正是利用弱碱性的醋酸阴离子[C1CO2]-与CO2间存在Lewis酸-碱作用的结果[40]

表1 298 KILsCO2/N2O溶解选择性[27-28,30,40-41]
Table 1 Solubility selectivity of CO2/N2O in ionic liquids at 298 K[27-28,30,40-41]

相对分子量ILs理想选择性20526[C4C1im][N(CN)2]09920618[C2C1im][CH3OHPO2]18322602[C4C1im][BF4]14641936[C4C1im][NTf2]19819730[C4C1im][SCN]12420526[C4C1im][N(CN)2]10319730[C4C1im][SCN]12410810[N2000][NO3]14419826[C4C1im][C1CO2]40519

2.1.3 CO2/CO,CO2/N2,CO2/H2和CO2/O2

虽然CO偶极矩仅为0.1 D,稍大于N2O的偶极矩,但[C4C1im][NTf2]的CO2/CO的溶解选择性为14.4(333.15 K,105 Pa)[8],是CO2/N2O的近10倍。CO极低的溶解度至今还未有学者能够给出合理的解释。图6为不同相对分子量ILs的CO2/N2,CO2/H2,CO2/O2及CO2/Ar的溶解选择性,大致呈现ILs相对分子量越大,溶解选择性越低的规律,也说明了气体选择性与ILs分子体积的反相关性。此外,图6还表明相对分子量较小的非氟化ILs并不逊于部分氟化ILs,如[C2C1im][CH3OHPO2]与[C2C1im][N(CN)2]的CO2/N2溶解选择性在313.15 K时分别高达75.31和51.03[28-29]

图6 298.15~313.15 K温度段CO2/N2,CO2/H2,CO2/O2,CO2/Ar溶解选择性随ILs相对分子量变化规律[8,12,20,28-31,33,42-44]
Fig.6 Selectivity of CO2/N2,CO2/H2,CO2/O2 and CO2/Ar in ionic liquids at a wide temperature range from 293.15 to 313.15 K[8,12,20,28-31,33,42-44]

另外,与CO2/CH4情况类似,升高温度会明显降低CO2与这些难溶气体的溶解选择性,如[C4Clim][PF6]在低温283.15 K时的CO2/O2选择性高达594.31,而当温度增加到323.15 K时选择性降至19.07[31]。这主要源于两方面原因:① CO2溶解度随温度升高而降低;② O2,H2,N2,CO等气体在部分ILs中反而出现随温度升高溶解度增加的异常情况[14,45-48]

有学者在ILs结构中引入胺基、羧酸基、非质子型含氮杂环、酚羟基类阴离子,并增加活性位点来增强ILs与CO2间的Lewis酸-碱反应(化学计量比甚至达到nCO2nIL=2∶1),从而提高对CO2的捕集和分离能力[49]。但化学吸收分离带来高分离率的同时,却使得ILs黏度及解吸能耗显著增加。因此,过强碱性的基团并非实现气体分离的首选。

2.2 SO2,H2S与CO2,CH4的分离

将SO2,H2S捕集并与CO2,CH4分离是天然气净化、烟气脱硫,从而降低含硫气体排放的关键,也是增加工业含硫原料供应的重要方法之一。近年来,将ILs用于含硫气体捕集的实验研究报道逐年增多。相对于酸性较强的高极性SO2和H2S气体分子,非极性的CO2,CH4在ILs中溶解度较低,因而有望利用ILs实现SO2/CO2,H2S/CO2和H2S/CH4的高效分离。

2.2.1 H2S/CO2和H2S/CH4

对于H2S/CH4的分离,可根据两种气体极性的差别,选用极性较高的ILs达到选择溶解的目的。高极性的[2mHEA][Prop]和[C4C1im][CH3SO3]具有较强的H2S溶解能力,即使在353 K的高温下H2S/CH4溶解选择性也可高达31和38[26]。相比之下,H2S/CO2的分离却因两种气体都呈酸性而导致溶解选择性普遍较低。JALILI等研究了[C2C1im][EtSO4][50],[HO(C2H4)mim][BF4][51],[C8C1im][NTf2][52],[C8C1im][PF6],[C2C1im][eFAP][53],[C2C1im][OTf][9]等咪唑类ILs对H2S/CO2的吸收分离规律,发现在阳离子为1-(2-羟乙基)-3-甲基咪唑类([HO(C2H4)mim]+)的ILs中的H2S/CO2选择性遵循如下顺序:[HO(C2H4)mim][NTf2](2.33)<[HO(C2H4)mim][OTf](3.12)<[HO(C2H4)mim][PF6](3.22)<[HO(C2H4)mim][BF4](3.45)。此外,阴离子较大的[C2C1im][eFAP][53]对H2S/CO2的选择性在303.15 K时仅为1.91,而阴离子较小的[C2C1im][OTf]在同样条件下H2S/CO2选择性为4.73[9]。结构简单、气体溶解力较弱的[C4C1im]Br在298.15 K,105 Pa时的H2S/CO2选择性为3.48[54]。总之,上述结果均表明,对于物理吸收,结构紧凑的ILs更有利于H2S/CO2的选择溶解,但是提高程度有限,大多数物理吸收选择性都低于5。

至于ILs对H2S和CO2的化学吸收选择性则视ILs-H2S和ILs-CO2间化学作用强弱而有所区别。根据表2所示,化学吸收分离效果普遍高于物理吸收。阳离子为[N2224]+的ILs H2S/CO2选择性大小顺序为[N2224][C1CO2]≈[N2224][Gly]<<[N2224][DMG]<[N2224][NIA]<[N2224][IMA]。阴离子为[C1CO2]-和[Gly]-的ILs对H2S,CO2均具有较高的溶解度,但H2S/CO2溶解选择性却极低,仅为1.1~2.3[55]。这主要是由于CO2和H2S与[C1CO2]-和[Gly]-阴离子间结合能均较强,导致两者溶解度差距较小。而量子化学分析认为H2S与[DMG]-,[IMA]-和[NIA]-结合能均高于CO2,其中[DMG]-的羧基和胺基与H2S与CO2都有可能结合,而[IMA]-和[NIA]-中受芳香环空间位阻影响,仅N原子能够与CO2产生较弱的键合,因而[N2 2 2 4][NIA],[N2224][IMA]的H2S/CO2选择性高于[N2224][DMG][55]。可见羧基若直接与链烃结构相连(如醋酸和甘氨酸类阴离子),CO2与阴离子间的化学作用导致较高的CO2溶解度;若与含氮杂环相连,CO2优先与含氮杂环结合,而与羧基的键合则可能由于空间位阻的原因而无法完成。此外,某些强碱性ILs的H2S/CO2选择性低于弱碱性ILs。如表2所列多种强碱性的咪唑苯甲酸类ILs中[C6C1im][4-CH3O-Ben]的H2S/CO2选择性(S=5.6)远低于碱性较弱的[C6C1im][2-F-Ben](S=20.6)和[C6C1im][2-Cl-Ben](S=18.4)[15]。这可能源于邻位强负电性F,Cl原子的存在,削弱了苯甲酸阴离子的碱性,从而降低了其对CO2的化学吸收能力。由此可见,碱性基团的碱性强弱和位置分布直接影响其与H2S和CO2的结合方式,导致差异明显的溶解选择性。

表2 羧酸功能化离子液体中H2S溶解度及H2S/CO2溶解选择性(333.15 K)[15,55]
Table 2 H2S Mole Ratio Solubility and H2S/CO2 selectivity in Carboxylate Ionic Liquids close to Ambient Pressure at 333.15 K[15,55]

阴离子对应酸的酸度系数值[15,56]ILsX(H2S)S(H2S/CO2)235[N2224][Gly]06711476[N2224][C1CO2]05015208[N2224][DMG]08113476[N2224][NIA]04016349[N2224][IMA]04026447[C6C1im][4-CH3O-Ben]04256434[C6C1im][4-CH3-Ben]03364424[C6C1im][3-CH3-Ben]03360420[C6C1im][Ben]03177414[C6C1im][4-F-Ben]02758409[C6C1im][3-CH3O-Ben]03273409[C6C1im][2-CH3O-Ben]03072399[C6C1im][4-Cl-Ben]024112391[C6C1im][2-CH3-Ben]03162387[C6C1im][3-F-Ben]02181383[C6C1im][3-Cl-Ben]02192327[C6C1im][2-F-Ben]023206294[C6C1im][2-Cl-Ben]018184023[C6C1im][CF3CO2]00759

图7 H2S/CO2溶解选择性随压力变化规律[55]
Fig 7 H2S/CO2 solubility selectivity with pressures[55]

此外,图7显示随压力升高,H2S/CO2在[N2 2 2 4][DMG],[N2 2 2 4][IMA]和[N2 2 2 4][NIA]中选择性明显下降。这可能是高压下ILs对CO2的吸收接近理论化学计量比;另一种可能则是随着压力升高,ILs吸收气体后逐渐变得黏稠极性降低[57-58],对H2S的化学吸收相对减小所致。

高温对H2S/CO2分离而言仍然属于不利因素。表3为不同ILs的H2S/CO2溶解选择性随温度的变化趋势,可见随温度升高,ILs的溶解选择性不同程度降低,其中[C4C1im][CH3SO4]从293.15 K升至333.15 K后,选择性从12.2降至4.08;其余ILs下降幅度都较小,[HO(C2H4)C1im][BF4]在303 K~333 K温度范围最多下降仅为0.79。因而,总体来看温升的影响并不明显。

表3 不同温度时H2S/CO2在部分ILs中的溶解选择性[9,11,51,53]
Table 3 H2S/CO2 selectivity in some ionic liquids with physical separation at different temperatures[9,11,51,53]

ILs温度T/K选择性S[C4C1im][CH3SO4]2931512203331540830315473[C2C1im][OTf]31315453323154313331540730315191[C2C1im][eFAP]31315185323151793331517130315161[C2C1im][EtSO4]31315156323151533331515230315345[HO(C2H4)C1im][BF4]313153113231528733315266

尽管H2S和CO2在物理吸收剂中的溶解选择性呈现随温度升高而下降趋势,但化学吸收分离的结果却显示部分ILs的H2S/CO2的选择性随温度升高而增加。图8表明[N2 2 2 4][DMG],[N2 2 2 4][IMA]和[N2 2 2 4][NIA]的H2S/CO2选择性(1×105 Pa时的摩尔分数溶解度比值)随温度升高明显增加,其中[N2 2 2 4][IMA]在350 K时的选择性高达60,与298 K时的选择性相比,提高了近5倍。这种相反的温度效应可能是因为温度升高为ILs与H2S的化学吸收提供能量,从而使得H2S的化学吸收速率明显增加所引起的。

图8 随温度升高H2S/CO2的理想溶解选择性[55]
Fig.8 Solubility selectivity of H2S/CO2 with increasing temperatures[55]

2.2.2 SO2/CO2理想选择性

有报道发现酸度系数pKa值分别为2.17,2.94,3.27,3.44,3.45的[C6Clim][2-NO2-Ben][C6Clim][2-Cl-Ben],[C6Clim][2-F-Ben],[C6Clim][4-NO2-Ben],[C6Clim][3-NO2-Ben]的SO2/CO2选择性高达227.6,156.5,136.7,116.9和154.3,而pKa值为4.47的[C6C1im][4-CH3O-Ben]的选择性仅为21.9[15]。说明强碱性基团并不能有效分离SO2/CO2,选择碱性较弱的取代基是提高两种酸性气体选择性的关键,这与上文中提高H2S/CO2溶解选择性的分析结论一致。一般情况下,由于碱性吸附位优先与SO2结合,导致在与SO2共存的情况下,CO2在碱基ILs中的吸收受阻,即所谓SO2对CO2的“抗溶”效应[16]。利用该效应可有效提高SO2/CO2溶解选择性,因而需要合理选择碱性强弱,尽量弱化碱基与CO2的结合能力。

同种IL可能对SO2和CO2具有不同的吸收机理,若在化学吸收SO2的同时物理吸收CO2,也可实现较高的选择性溶解。有学者研究了[C6C1im][NTf2][59],[C6C1Py][NTf2][59]和[C4C1im][MeSO4][11]等CO2物理吸收剂的SO2/CO2选择性,发现在293.15 K时[C4C1im][MeSO4]的SO2/CO2选择性为444.44,这主要归因于SO2与阴离子[MeSO4]-之间的化学相互作用[11,60-61]。S L RABIE的研究也证实了阴离子[MeSO4]-对SO2/CO2的优异选择性,指出这类含硫酸类阴离子的ILs具有优秀的捕集SO2的应用潜力[62]。除此之外,由于阴离子[SCN]-仅对SO2化学吸收,而[Tetz]-与SO2和CO2均能化学键合,因而具有[SCN]-类的ILs[63-64]比[Tetz]-类的ILs[65-66]的溶解选择性更好(表4)。这也是[C4C1im][C1CO2]的SO2/CO2选择性仅为6.97(298.15 K)的重要原因[67]

S(1/1)为压力1×105 Pa时的摩尔溶解度比值,SKH为亨利常数比值此外,HONG S Y等研究报道称带有较长醚键的ILs,如[C1(C2H4O)8C1im][MeSO3],对SO2具有优异的溶解能力(303 K,105 Pa时的SO2溶解度达6.3 mol SO2/mol IL)[70],而醚键的引入对增加CO2溶解度的效果并不明显,因而此类ILs也有望成为优异的SO2/CO2吸收分离剂。

表4 不同温度时SO2/CO2在部分ILs中的溶解选择性[11,59,63-69]
Table 4 SO2/CO2 selectivity in some ionic liquids with physical separation at different temperatures[11,59,63-69]

ILsT/KS[C4C1im][C1CO2]29815697[C4Py][BF4]293152800[Et2NEMim][NTf2]293154014[Et2NEMim][Tetz]293153927[P66614][Tetz]293154650[E2Py]Cl293154905S(1/1)[E3Py]Cl293154930[E4Py]Cl293154460[C4Py][SCN]293155667[Et2NC2Py][SCN]293156488[C4OPy][SCN]293157040[C4CNPy][SCN]293157900[C6C1Py][NTf2]298152130[C6C1im][NTf2]298151930SKH[C6C1im][NTf2]313151991[C4C1im][MeSO4]2931544444[C4C1im][MeSO4]333157391

3 实际选择性

通过假定的理想混合气的溶解度来确定混合气的真实溶解选择性并非适用于任何情况。当ILs中存在高浓度溶质时,理想选择性与真实选择性的偏差较为明显。由于液相中混合气各气体组分的溶解度测量很难完成,GOMES,RAMDIN,BRENNECKE,MAGINN,SHIFLETT等课题组借助分子动力学模拟IL-二元混合气的三元体系,分析三元体系的相平衡行为,并研究两种气体在ILs中的相互影响。

SHIFLETT等通过 Redlich-Kwong状态方程模拟了N2O/CO2-[C4Clim][BF4]的三元体系[71],结果显示增加N2O进料比和[C4Clim][BF4]含量可以略微提高选择性;CO2/N2O的进料比为1∶9,1∶1和9∶1三种情况下,CO2/N2O真实选择性(298.15 K,105 Pa)为1.493~1.518,与CO2/N2O理想选择性1.46相当[30]。CO2/CH4的真实选择性是温度、压力及溶质浓度综合影响的结果。与理想选择性类似,CO2/CH4真实选择性在ILs(如[C4C1im][NTf2]和[C2C1im][dep][23])中随温度升高而明显下降。该现象也同样发生在CO2与其它难溶气体的吸收分离中。HERT等对CO2/CH4在[C6C1im][NTf2]中溶解研究结果发现较低的压力和较高的CO2进料浓度下的气体选择性更好[72]。BUDHATHOKI等基于分子动力学和蒙特卡罗计算对不同CO2/CH4气相物质的量比(4∶96,8∶92和16∶84)时在[C4C1im][NTf2]中的溶解选择性进行了模拟。表5为[C4C1im][NTf2]中CO2/CH4真实选择性与理想选择性(物质的量比)的比较,结果显示在进料比CO2∶CH4=8∶92时,选择性最高为7.5。之后随着进料中CO2浓度增加,CO2/CH4实际选择性逐渐降低;而理想选择性(物质的量浓度比)在进料比74∶26时选择性低至2.87[73]。可见,在CO2进料浓度较高情况下,理想选择性与实际选择性(物质的量浓度比)偏差较大。

表5 [C4C1im][NTf2]CO2/CH4溶解度选择性 (温度333 K,总压100 bar)[73]
Table 5 CO2/CH4 solubility selectivity in[C4C1im] [NTf2] at 333 K and total pressure of 100 bar[73]

进料CO2浓度进料CH4浓度CO2/CH4实际选择性CO2/CH4理想选择性y(CO2)y(CH4)βS(CO2/CH4)βS,ideal(CO2/CH4)0038096262102000750924759010159084061763041705836350007440257562870864013654—

上述研究结果显示的进料中CO2浓度高,反而导致实际的溶解选择性降低,这可能是由于CO2可作为共溶剂促进CH4吸收,从而导致溶解度比值下降[72]。除CH4外,有学者认为CO2还是其它难溶气体(如N2,H2和O2)的共溶剂。KUMELAN,SOLINAS和TOUSSAINT等学者实验研究发现CO2能够加强H2在离子液[C2C1im][NTf2],[C4C1im][BF4]和[C6C1im][NTf2]中的溶解度[74-76]。HERT等研究发现298.15 K和13 bar时,在与CO2共存情况下,O2和CH4在[C6C1im][NTf2]中的溶解度增加[72]。造成这种现象的原因可能是当CO2与阴离子发生静电作用时,难溶性气体与阳离子上长烷基链之间的分散作用力增强;另一方面,CO2与阴离子的结合削弱了ILs分子内阴-阳离子间的相互作用,导致ILs的黏度降低,从而加速了H2,O2,CH4在液相中的扩散。另有研究认为CO2会诱导ILs产生溶胀,从而提供更多的自由空间[77-78]。尽管如此,这种共溶行为受温度影响较大,如温度低于330 K时,H2在[C4C1im][BF4]的溶解度随CO2溶解而增加;而当温度高于340 K时,H2的溶解度则随着CO2溶解而降低[76]

迄今为止,关于CO2与难溶气体共溶的解释还存在一些争议。例如:SHI等发现在CO2存在的情况下O2与N2溶解度增加量很小,认为可忽略CO2-O2之间相互作用能的影响[79]。当然不同的实验与模拟条件(如温度、压力、CO2浓度等)也是影响最终结果的重要因素。因此,ILs中气体共溶的内在机理还需要结合更多的实验测试与计算机模拟进行深入探讨,从而揭示气体-气体之间以及气体-IL之间的相互作用。

与CO2对难溶气体的“共溶”效应相反,SO2和H2S在ILs溶解CO2过程中起“抗溶”作用,它们的存在将与CO2争夺化学反应位点,从而阻碍CO2化学吸收[16],达到较高的溶解选择性。基于Redlich-Kwong状态方程,SHIFLETT等预测了CO2-SO2-[C6C1im][NTf2][80],CO2-SO2-[C4C1im][MeSO4][81],CO2-H2S-[C4C1im][PF6][82]及CO2-H2S-[C4C1im][MeSO4][83]三元体系的相行为。LLOVELL等则利用Soft-SAFT状态方程对类似的三元系统CO2-SO2-[C4C1im][MeSO4]和CO2-H2S-[C4C1im][MeSO4]系统进行了模拟计算[11]。模拟结果表明,低温有利于SO2/CO2的选择性吸收;通过增加IL量来提高气体选择性的效果并不明显,即少量的IL就可以达到非常高的选择性。例如:当CO2/SO2的物质的量比为9/1时,浓度低于1%的[C4C1im][MeSO4]的溶解选择性高达到近390(298.15 K)[11]。SHIFLETT等采用的Redlich-Kwong模型计算结果则显示随着[C4C1im][MeSO4]的摩尔比增加,溶解选择性呈波形变化趋势,而且 CO2浓度较大时,大量的IL反而获得较低的气体选择性[81]。另一方面,IL含量较少时,进料中SO2浓度高的混合气比SO2浓度低的混合气的溶解选择性要小得多;尽管如此,随着IL用量增加,不同进料比的SO2/CO2混合气的选择性溶解差距逐渐减小,如当IL物质的量浓度近80%时,进料比SO2/CO2为9∶1与1∶1两种情况时的溶解选择性均接近340(T=298.15 K,P=105 Pa)[81]。由此可见,可以根据气体进料中SO2浓度适当调节IL用量以期达到较为理想的溶解选择性。关于CO2/H2S进料比的影响,在CO2-H2S-[C4C1im][MeSO4]模拟中,Shiflett与Llovell两位学者均发现气体进料比对溶解选择性的影响甚微。随着IL含量增加,不同进料比混合气的溶解选择性最终会达到一恒定峰值。同一现象在CO2-H2S-[C2C1im][eFAP]三元体系的RK模型预测结果中也有体现[53]

总之,混合气体实际溶解选择性受进气浓度配比、ILs含量、温度、压力等因素综合影响,需要根据气体进料情况调节吸收剂用量以及设置合适的温度、压力条件才能获得较高的溶解选择性。

4 结 论

(1)从N2,H2,O2,CO,CH4等难溶气体中分离CO2并不困难,尤其是含有极性基团(如[OH]-,[MeSO4]-,[CH3OHPO2]-等)的ILs比传统ILs(如[C4C1im][BF4],[C4C1im][NTf2]等)分离能力至少高2倍。另外,可引入碱性基团或功能化阴离子(如羧酸类、氨基酸类、非质子型的含氮杂环和酚类阴离子)等,提高对CO2化学吸收能力,从而促进CO2与其它难溶气体的分离。

(2)含有强碱性基团的ILs对CO2,SO2和H2S三种酸性气体均能产生化学吸收,从而导致CO2/SO2,CO2/H2S溶解选择性较低;因而需合理调节ILs碱性及碱性基团位置,以弱化ILs与CO2的结合,来提高SO2/CO2及H2S/CO2选择性。

(3)通过数据统计分析发现小分子量的ILs以及低温、低压条件更有利于提高气体选择性。

(4)针对混合气体实际溶解选择性的研究均表明实际气体溶解选择性受气体进料比、ILs含量、温度、压力等因素综合影响,因此需根据实际进气组分浓度确定合理的ILs用量、操作温度和压力来实现高效分离。

综合前述研究现状,认为今后该领域有待深入开展的主要研究内容如下:

(1)通常情况下低温和低压有利于提高气体选择性,但对于某些黏度较大的ILs,升温对提高气体选择性却具有一定的促进作用;而某些ILs吸收气体后黏度明显增加,影响后续稳定吸收,因而需对黏度与溶解度、吸收选择性的影响规律进一步实验研究。

(2)为高效分离气体混合物,有必要开展分子动力学模拟计算,深入探索ILs与气体、气体与气体之间的相互作用,研究气体之间的共溶/抗溶效应及其影响因素。基于分子动力学模拟计算研究ILs对多组分气体进行吸收分离是目前ILs用于气体分离的研究重点内容之一。

(3)对于混合气体的实际溶解选择性,由于无法依靠实验测试准确获取液相中各气体组分溶解度,因而需借助多组分气体相平衡方程进行模拟计算。不同状态方程模拟出的结果并非完全一致,对气体溶解选择性影响因素的结果难免存在一些争议,因而比较多种状态方程在多组分气体-IL相平衡中的研究结果对深入探索进气浓度、ILs用量、温度、压力对气体分离的影响规律具有重要的意义。再者,有关混合气体在ILs中相平衡的研究报道还较少,特别是涉及化学吸收的功能化ILs对混合气的分离效果还未见报道。

(4)由于高温不利于气体吸收,因而大部分学者对于ILs吸收气体的研究均在373 K以下进行,而对于处理气体温度较高(如实际的电厂烟道气温度一般在383~413 K左右[84])的情况研究甚少。文献[84]报道了大气压下[TETA]L聚合离子液体在383 K时对CO2的溶解度为0.944物质的量比(0.176质量比);另有学者报道了105 Pa下[C4C1im]L和[N2 2 2 2]L对SO2的化学吸收,110 ℃时的溶解度均在1 mol/molIL左右[85]。尽管如此,这些文献均未报道气体选择性和解吸条件。而BARBOIU等将([C4C1im][NTf2]与碳酸酐酶结合形成膜材料,并测得其在373 K时的CO2/N2气体选择性高达35.6[86]。由此可见,与其它功能材料结合之后,高温下ILs的气体吸收选择性研究同样具有非常重要的意义,尤其针对选择吸收性强、热稳定性高的功能化ILs。

(5)本文主要是对纯ILs在气体分离方面的实验研究进行总结分析,旨在探索ILs结构特征对不同气体混合物吸收分离的影响,为高效吸收分离气体的ILs结构设计提供重要信息和参考数据。近年来,不少学者将ILs与有机溶剂、碱性溶液结合用于气体吸收分离,以期获得更高的溶解度和选择分离率;而ILs与有机溶剂间作用对气体的选择性吸收的影响均是值得深入探讨的重要问题。

参考文献(References):

[1] 尹志胜,桑树勋,周效志.煤炭资源枯竭矿井煤层气运移及富集规律研究[J].特种油气藏,2014,21(5):48-51.

YIN Zhisheng,SANG Shuxun,ZHOU Xiaozhi.Study on coalbed methane migration and accumulation in coal mine[J].Special Oil & Gas Reservoirs,2014,21(5):48-51.

[2] 李磊.低浓度瓦斯发电技术研究现状及展望[J].矿业安全与环保,2014(2):86-89.

LI Lei.Present situation and prospects of power generation technology with low-concentration gas[J].Mining Safety & Environmental Protection,2014(2):86-89.

[3] 张旭,胡彪,梁金川.高含CO2天然气处理工艺研究[J].当代化工,2015(11):2697-2699.

ZHANG Xu,HU Biao,LIANG Jinchuan.Research on treatment technology for natural gas with high CO2 content[J].Contemporary Chemical Industry,2015(11):2697-2699.

[4] 王治红,吴明鸥,王小强,等.富含CO2天然气低温分离防冻堵工艺研究[J].天然气与石油,2012,30(4):26-29.

WANG Zhihong,WU Mingou,WANG Xiaoqiang,et al.Study on the technology of freeze-thawing of CO2-rich natural gas[J].Natural Gas and Oil,2012,30(4):26-29.

[5] 孙亚伟,谢美连,刘庆岭,等.膜法分离燃煤电厂烟气中CO2的研究现状及进展[J].化工进展,2017,36(5):1880-1889.

SUN Yawei,XIE Meilian,Liu Qingling,et al.Membreane-based carbon dioxide separation from flue gases of coal-fired power plant-current status and developments[J].Chemical Industry and Engineering Progress,2017,36(5):1880-1889.

[6] SAMANTA Arunkumar,ZHAO An,SHIMIZU George K H,et al.Post-combustion CO2 capture using solid sorbents:A review[J].Industrial & Engineering Chemistry Research,2012,51(4):1438-1463.

[7] 张超昱.氨水溶液的CO2膜吸收及减压再生研究[D].杭州:浙江大学,2012.

ZHANG Chaoyu.Experimental study of ammonia characteristic of CO2 absorption and vacuum regeneration by using membrane[D].Hangzhou:Zhejiang University,2012.

[8] PEREIRA Luis M C,MARTINS Vania,KURNIA Kiki Adi,et al.High pressure solubility of CH4,N2O and N2 in 1-butyl-3-methylimidazolium dicyanamide:Solubilities,selectivities and soft-SAFT modeling[J].Journal of Supercritical Fluids,2016,110:56-64.

[9] NEMATPOUR Mohsen,JALILI Amir H,GHOTBI Cyrus,et al.Solubility of CO2 and H2S in the ionic liquid 1-ethyl-3-methylimidazolium trifluoromethanesulfonate[J].Journal of Natural Gas Science and Engineering,2016,30:583-591.

[10] MOURA Leila,SANTINI Catherine C,GOMES Margarida F Costa.Gaseous hydrocarbon separations using functionalized ionic liquids[J].Oil & Gas Science and Technology-Revue D Ifp Energies Nouvelles,2016,71:23(11).

[11] LLOVELL Felix,OLIVEIRA Mariana B,COUTINHO JOAO A P,et al.Solubility of greenhouse and acid gases on the[C4mim][MeSO4]ionic liquid for gas separation and CO2 conversion[J].Catalysis Today,2015,255:87-96.

[12] RAMDIN Mahinder,BALAJI Sayee Prasaad,MANUEL VICENT-LUNA Jose,et al.Solubility of the precombustion gases CO2,CH4,CO,H2,N2,and H2S in the ionic liquid[bmim][Tf2N]from monte carlo simulations[J].Journal of Physical Chemistry C,2014,118(41):23599-23604.

[13] MORTAZAVI-MANESH Soheil,SATYRO Marco A,MARRIOTT Robert A.Screening ionic liquids as candidates for separation of acid gases:Solubility of hydrogen sulfide,methane,and ethane[J].Aiche Journal,2013,59(8):2993-3005.

[14] KUMEAN Jacek,P REZ-SALADO KAMPS lvaro,TUMA Dirk,et al.Solubility of the single gases carbon monoxide and oxygen in the ionic liquid[hmim][Tf2N][J].Journal of Chemical and Engineering Data,2009,54(3):966-971.

[15] HUANG K,WU Y T,HU X B.Effect of alkalinity on absorption capacity and selectivity of SO2 and H2S over CO2:Substituted benzoate-based ionic liquids as the study platform[J].Chemical Engineering Journal,2016,297:265-276.

[16] LEI Zhigang,DAI Chengna,CHEN Biaohua.Gas solubility in ionic liquids[J].Chemical Reviews,2014,114(2):1289-1326.

[17] ANTHONY J L,ANDERSON J L,MAGINN E.J,et al.Anion effects on gas solubility in ionic liquids[J].Journal of Physical Chemistry B,2005,109(13):6366-6374.

[18] JIANG Yingying,ZHOU Zheng,JIAO Zhen,et al.SO2 gas separation using supported ionic liquid membranes[J].Journal of Physical Chemistry B,2007,111(19):5058-5061.

[19] LEE B C,OUTCALT S L.Solubilities of gases in the ionic liquid 1-n-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide[J].Journal of Chemical and Engineering Data,2006,51(3):892-897.

[20] CARLISLE T K,BARA J E,GABRIEL C J,et al.Interpretation of CO2 solubility and selectivity in nitrile-functionalized room-temperature ionic liquids using a group contribution approach[J].Industrial & Engineering Chemistry Research,2008,47(18):7005-7012.

[21] DYSON P J,LAURENCZY G,OHLIN C A,et al.Determination of hydrogen concentration in ionic liquids and the effect (or lack of) on rates of hydrogenation[J].Chemical Communications,2003,19(19):2418-2419.

[22] OHLIN C A,DYSON P J,LAURENCZY G.Carbon monoxide solubility in ionic liquids:determination,prediction and relevance to hydroformylation[J].Chemical Communications,2004(9):1070-1071.

[23] DENG Yun,MORRISSEY Saibh,GATHERGOOD Nicholas,et al.The presence of functional groups key for biodegradation in ionic liquids:Effect on gas solubility[J].Chemsuschem,2010,3(3):377-385.

[24] RAMDIN M,AMPLIANITIS A,BAZHENOV S,et al.Solubility of CO2 and CH4 in ionic liquids:Ideal CO2/CH4 selectivity[J].Industrial & Engineering Chemistry Research,2014,53(40):15427-15435.

[25] LUIS P.Use of monoethanolamine (MEA) for CO2 capture in a global scenario:Consequences and alternatives[J].Desalination,2016,380:93-99.

[26] CARVALHO Pedro J,COUTINHO Joao A P.The polarity effect upon the methane solubility in ionic liquids:A contribution for the design of ionic liquids for enhanced CO2/CH4 and H2S/CH4 selectivities[J].Energy & Environmental Science,2011,4(11):4614-4619.

[27] CHEN Yushu,MUTELET Fabrice,JAUBERT Jean-Noel.Solubility of carbon dioxide,nitrous oxide and methane in ionic liquids at pressures close to atmospheric[J].Fluid Phase Equilibria,2014,372:26-33.

[28] PEREIRA Luis M C,OLIVEIRA Mariana B,DIAS Ana M A,et al.High pressure separation of greenhouse gases from air with 1-ethyl-3-methylimidazolium methyl-phosphonate[J].International Journal of Greenhouse Gas Control,2013,19:299-309.

[29] CAMPER D,BARA J,KOVAL C,et al.Bulk-fluid solubility and membrane feasibility of rmim-based room-temperature ionic liquids[J].Industrial & Engineering Chemistry Research,2006,45(18):6279-6283.

[30] FINOTELLO Alexia,BARA Jason E,CAMPER Dean,et al.Room-temperature ionic liquids:Temperature dependence of gas solubility selectivity[J].Industrial & Engineering Chemistry Research,2008,47(10):3453-3459.

[31] ANTHONY J L,MAGINN E J,BRENNECKE J F.Solubilities and thermodynamic properties of gases in the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate[J].Journal of Physical Chemistry B,2002,106(29):7315-7320.

[32] ALTHULUTH Mamoun,KROON Maaike C.,PETERS Cor J.Solubility of methane in the ionic liquid 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate[J].Industrial & Engineering Chemistry Research,2012,51:16709-16712.

[33] BARA Jason E,GABRIEL Christopher J,LESSMANN Sonja,et al.Enhanced CO2 separation selectivity in oligo(ethylene glycol) functionalized room-temperature ionic liquids[J].Industrial & Engineering Chemistry Research,2007,46(16):5380-5386.

[34] CAMPER D,SCOVAZZO P,KOVAL C,et al.Gas solubilities in room-temperature ionic liquids[J].Industrial & Engineering Chemistry Research,2004,43(12):3049-3054.

[35] ZHANG J,ZHANG Q H,QIAO B T,et al.Solubilities of the gaseous and liquid solutes and their thermodynamics of solubilization in the novel room-temperature ionic liquids at infinite dilution by gas chromatography[J].Journal of Chemical and Engineering Data,2007,52(6):2277-2283.

[36] ANTHONY J L,ANDERSON J L,MAGINN E J,et al.Anion effects on gas solubility in ionic liquids[J].Journal of Physical Chemistry B,2005,109(13):6366-6374.

[37] CAMPER D,BECKER C,KOVAL C,et al.Diffusion and solubility measurements in room temperature ionic liquids[J].Industrial & Engineering Chemistry Research,2006,45(1):445-450.

[38] ALTHULUTH Mamoun,MOTA-MARTINEZ Maria Teresa,BERROUK Abdallah,et al.Removal of small hydrocarbons (ethane,propane,butane) from natural gas streams using the ionic liquid 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate[J].Journal of Supercritical Fluids,2014,90:65-72.

[39] 陈德利,王宁伟,王芳芳,等.利用ZIF-7材料的开门效应分离N2O和CO2混合气体的研究[A].中国化学会全国量子化学会议[C].2014.

CHEN Deli,WANG Ningwei,WANG Fangfang,et al.Study on separation of N2O and CO2 mixed gas by the opening effect of zif-7 material[A].Chinese Chemical Society National Conference on Quantum Chemistry[C].2014.

[40] PEREIRA L M C,OLIVEIRA M B,LLOVELL F,et al.Assessing the N2O/CO2 high pressure separation using ionic liquids with the soft-SAFT EoS[J].Journal of Supercritical Fluids,2014,92:231-241.

[41] SHIFLETT M B,NIEHAUS A M S,ELLIOTT B A,et al.Phase behavior of N2O and CO2 in room-temperature ionic liquids[bmim][Tf2N],[bmim][BF4],[bmim][N(CN)2],[bmim][Ac],[eam][NO3],and[bmim][SCN][J].International Journal of Thermophysics,2012,33(3):412-436.

[42] ZHOU Lingyun,FAN Jing,SHANG Xiaomin.CO2 capture and separation properties in the ionic liquid 1-n-butyl-3-methylimidazolium nonafluorobutylsulfonate[J].Materials,2014,7(5):3867-3880.

[43] BAHADUR I,OSMAN K,COQUELET C,et al.Solubilities of carbon dioxide and oxygen in the ionic liquids methyl trioctyl ammonium bis(trifluoromethylsulfonyl)imide,1-butyl-3-methyl imidazolium bis(trifluoromethylsulfonyl)imide,and 1-butyl-3-methyl imidazolium methyl sulfate[J].Journal of Physical Chemistry,2015,119(4):1503-1514.

[44] KUMEAN Jacek,TUMA Dirk,KAMPS lvaro PérezSalado,et al.Solubility of the single gases carbon dioxide and hydrogen in the ionic liquid[bmpy][Tf2N][J].Journal of Chemical & Engineering Data,2010,55(1):165-172.

[45] KUMEAN J,P REZ-SALADO KAMPS lvaro,TUMA D,et al.Solubility of CO in the ionic liquid[bmim][PF6][J].Fluid Phase Equilibria,2005,228:207-211.

[46] FLORUSSE L J,RAEISSI S,PETERS C J.An IUPAC Task Group Study:The solubility of carbon monoxide in[hmim][Tf2N]at high pressures[J].Journal of Chemical and Engineering Data,2011,56(12):4797-4799.

[47] JACQUEMIN J,GOMES M F C,HUSSON P,et al.Solubility of carbon dioxide,ethane,methane,oxygen,nitrogen,hydrogen,argon,and carbon monoxide in 1-butyl-3-methylimidazolium tetrafluoroborate between temperatures 283 K and 343 K and at pressures close to atmospheric[J].Journal of Chemical Thermodynamics,2006,38(4):490-502.

[48] SHETHNA H K,TOWLER G P.Design of mixed-solvent processes for chemisorption with ultrahigh recovery[J].Industrial & Engineering Chemistry Research,1997,36(12):5307-5320.

[49] CUI Guokai,WANG Jianji,ZHANG Suojiang.Active chemisorption sites in functionalized ionic liquids for carbon capture[J].Chemical Society Reviews,2016.45(15):4307

[50] JALILI Amir Hossein,MEHDIZADEH Ali,SHOKOUHI Mohammad,et al.Solubility and diffusion of CO2 and H2S in the ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate[J].Journal of Chemical Thermodynamics,2010,42(10):1298-1303.

[51] SHOKOUHI Mohammad,ADIBI Mina,JALILI Amir Hossein,et al.Solubility and diffusion of H2S and CO2 in the ionic liquid 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate[J].Journal of Chemical and Engineering Data,2010,55(4):1663-1668.

[52] JALILI Amir Hossein,SAFAVI Mohammadali,GHOTBI Cyrus,et al.Solubility of CO2,H2S,and their mixture in the ionic liquid 1-octyl-3-methylimidazolium bis(trifluoromethyl)sulfonylimide[J].Journal of Physical Chemistry B,2012,116(9):2758-2774.

[53] JALILI Amir Hossein,SHOKOUHI Mohammad,MAURER Gerd,et al.Solubility of CO2 and H2S in the ionic liquid 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate[J].Journal of Chemical Thermodynamics,2013,67:55-62.

[54] HANDY H,SANTOSO A,WIDODO A,et al.H2S-CO2 Separation using room temperature ionic liquid[BMIM][Br][J].Separation Science and Technology,2014,49(13):2079-2084.

[55] HUANG Kuan,CAI Daniu,CHEN Yongle,et al.Dual lewis base functionalization of ionic liquids for highly efficient and selective capture of H2S[J].Chempluschem,2014,79(2):241-249.

[56] D D PERRIN.Dissociation constants of organic bases in aqueous solution[D].London:International Union of Pure and Applied Chemistry,1972.

[57] ZHAO Y,LIU X,LU X,et al.The behavior of ionic liquids under high pressure:A molecular dynamics simulation[J].Journal of Physical Chemistry B,2012,116(35):10876-10884.

[58] SHARMA S,GUPTA A,KASHYAP H K.How the structure of pyrrolidinium ionic liquids is susceptible to high pressure[J].Journal of Physical Chemistry B,2016,120(12):3206-3214.

[59] ANDERSON Jessica L,DIXON JaNeille K,MAGINN Edward J,et al.Measurement of SO2 solubility in ionic liquids[J].Journal of Physical Chemistry B,2006,110(31):15059-15062.

[60] GU P,LU R Q,WANG S T,et al.The comparative study on interactions between ionic liquid and CO2/SO2 by a hybrid density functional approach in the gas phase[J].Computational and Theoretical Chemistry,2013,1020:22-31.

[61] GARCIA G,ATILHAN M,APARICIO S.Assessment of DFT methods for studying acid gas capture by ionic liquids[J].Phys Chem Chem Phys,2015,17(40):26875-26891.

[62] RABIE Samuel Liversage.SO2 and O2 separation by using ionic liquid absorption.North-West University,2012.

[63] ZENG Shaojuan,HE Hongyan,GAO Hongshuai,et al.Improving SO2 capture by tuning functional groups on the cation of pyridinium-based ionic liquids[J].Rsc Advances,2015,5(4):2470-2478.

[64] ZENG Shaojuan,ZHANG Xiaochun,GAO Hongshuai,et al.SO2-induced variations in the viscosity of ionic liquids investigated by in situ fourier transform infrared spectroscopy and simulation calculations[J].Industrial & Engineering Chemistry Research,2015,54(43):10854-10862.

[65] YANG Dezhong,HOU Minqiang,NING Hui,et al.Reversible capture of SO2 through functionalized ionic liquids[J].Chemsuschem,2013,6(7):1191-1195.

[66] WANG Congmin,CUI Guokai,LUO Xiaoyan,et al.Highly efficient and reversible SO2 capture by tunable azole-based ionic liquids through multiple-site chemical absorption[J].Journal of the American Chemical Society,2011,133(31):11916-11919.

[67] LI Xiaoshan,ZHANG Liqi,ZHENG Ying,et al.Effect of SO2 on CO2 absorption in flue gas by ionic liquid 1-ethyl-3-methylimidazolium acetate[J].Industrial & Engineering Chemistry Research,2015,54(34):8569-8578.

[68] ZENG Shaojuan,GAO Hongshuai,ZHANG Xiaochun,et al.Efficient and reversible capture of SO2 by pyridinium-based ionic liquids[J].Chemical Engineering Journal,2014,251:248-256.

[69] WANG Jian,ZENG Shaojuan,BAI Lu,et al.Novel ether-functionalized pyridinium chloride ionic liquids for efficient SO2 capture[J].Industrial & Engineering Chemistry Research,2014,53(43):16832-16839.

[70] HONG Sung Yun,IM Jinkyu,PALGUNADI Jelliarko,et al.Ether-functionalized ionic liquids as highly efficient SO2 absorbents[J].Energy & Environmental Science,2011,4(5):1802-1806.

[71] SHIFLETT Mark B,ELLIOTT Beth A,YOKOZEKI A.Phase behavior of NO and CO in room-temperature ionic liquids[bmim][TfN],[bmim][BF],[bmim][N(CN)],[bmim][Ac],[eam][NO],and[bmim][SCN][J].International Journal of Thermophysics,2012,33(3):412-436.

[72] HERT D G,ANDERSON J L,AKI Snvk,et al.Enhancement of oxygen and methane solubility in 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide using carbon dioxide[J].Chemical Communications,2005,20(20):2603-2605.

[73] BUDHATHOKI Samir,SHAH Jindal K.,MAGINN Edward J.Molecular simulation study of the solubility,diffusivity and permselectivity of pure and binary mixtures of CO2 and CH4 in the ionic liquid 1-n-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide[J].Industrial & Engineering Chemistry Research,2015,54(35):8821-8828.

[74] KUMELAN Jacek,TUMA Dirk,MAURER Gerd.Simultaneous solubility of carbon dioxide and hydrogen in the ionic liquid[hmim][Tf2N]:Experimental results and correlation[J].Fluid Phase Equilibria,2011,311(1):9-16.

[75] SOLINAS M,PFALTZ A,COZZI P G,et al.Enantioselective hydrogenation of imines in ionic liquid/carbon dioxide media[J].Journal of the American Chemical Society,2004,126(49):16142-16147.

[76] TOUSSAINT V A,KUHNE E,SHARIATI A,et al.Solubility measurements of hydrogen in 1-butyl-3-methylimidazolium tetrafluoroborate and the effect of carbon dioxide and a selected catalyst on the hydrogen solubility in the ionic liquid[J].Journal of Chemical Thermodynamics,2013,59:239-242.

[77] FIEBACK Tobias M,DREISBACH Frieder.New approach for simultaneous measurement of gas absorption and swelling[J].Industrial & Engineering Chemistry Research,2011,50(11):7049-7055.

[78] SAKELLARIOS N I,KAZARIAN S G.Ionic Liquids ⅢA:Fundamentals,Progress,Challenges,and Opportunities,Properties and Structure[D].Washington DC:American Chemical Society,2005.

[79] SHI Wei,MAGINN Edward J.Molecular simulation and regular solution theory modeling of pure and mixed gas absorption in the ionic liquid 1-n-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([hmim][Tf2N])[J].Journal of Physical Chemistry B,2008,112(51):16710-16720.

[80] YOKOZEKI A,SHIFLETT Mark B.Separation of carbon dioxide and sulfur dioxide gases using room-temperature ionic liquid[hmim][Tf2N][J].Energy & Fuels,2009,23:4701-4708.

[81] SHIFLETT Mark B,YOKOZEKI A.Separation of carbon dioxide and sulfur dioxide using room-temperature ionic liquid[bmim][MeSO4][J].Energy & Fuels,2010,24:1001-1008.

[82] SHIFLETT Mark B,YOKOZEKI A.Separation of CO2 and H2S using room-temperature ionic liquid[bmim][PF6][J].Fluid Phase Equilibria,2010,294(1-2):105-113.

[83] SHIFLETT Mark B,NIEHAUS Anne Marie S,YOKOZEKI A.Separation of CO2 and H2S using room-temperature ionic liquid[bmim][MeSO4][J].Journal of Chemical and Engineering Data,2010,55(11):4785-4793.

[84] REN Shuhang,HOU Yucui,WU Weize,et al.CO2 capture from flue gas at high temperatures by new ionic liquids with high capacity[J].Rsc Advances,2012,2(6):2504-2507.

[85] TIAN Shidong,HOU Yucui,WU Weize,et al.Absorption of SO2 at high temperatures by ionic liquids and the absorption mechanism[J].Bulletin-Korean Chemical Society,2014,35(9):2791-2796.

[86] ABDELRAHIM M Yahia M,MARTINS Carla F,NEVES Luísa A,et al.Supported ionic liquid membranes immobilized with carbonic anhydrases for CO2 transport at high temperatures[J].Journal of Membrane Science,2017,528:225-230.

Gas separation by absorption in pure ionic liquids

WANG Lanyun1,2,LI Zhendong1,WEI Yanan1,XU Yongliang1,2,3,WEI Jianping1,2,3

(1.College of Safety Science and Engineering,Henan Polytechnic University,Jiaozuo 454003,China; 2.Key Laboratory of Henan Province for Gas & Fire Prevention in Coalmines,Jiaozuo 454003,China; 3.Collaborative Innovation Center of Coal Safety Production of Henan Province,Jiaozuo 454003,China)

Abstract:In order to meet the requirements of low-carbon economy,the reduction and utilization of global-warming gases have become the focus of attention.There are a large amount of toxic and harmful gases being emitted from the combustion of fossil fuels and syngas,as well as being released during mining activities.It is therefore necessary to trap and separate these gases for eliminating their environmental contamination,also increasing the feedstocks for industrial production.For avoiding the contamination and safety problems raised from the conventional alkali absorbents,the ionic liquids,namely “liquid molecular sieve”,have become green alternatives to absorb and separate different gases.Accordingly,the research progress about separating gases by pure ionic liquids is reviewed in this paper.The influencing factors including temperature,pressure,the properties of gas and ionic liquids,and the functional groups of ionic liquids,were analyzed.It is stated that the ionic liquids with alkali groups on cation and anion are promising CO2 solvents and competent separator for removing CO2 from some sparsely soluble gases.In order to separate CO2 from strongly acidic SO2 and H2S,moderate basicity exhibits much better separating ability because strong alkali group could strongly bind with both SO2(or H2S) and CO2,leading to low SO2/CO2 and H2S/CO2 selectivities.Ionic liquids with small molecular weights and compact structures usually perform better selectivity,and low temperature and pressure are favorable for increasing the separation.Additionally,combining experimental results and molecular dynamic simulation,the real selectivity of binary gases in ionic liquids was calculated based on Equations of State.It is concluded that feed gas ratio,ionic liquid contents,temperature and pressure are significant factors required to be adjusted to approach a great real gas selectivity.

Key words:ionic liquids;gas separation;solubility;ideal selectivity;real selectivity

王兰云,李振东,位亚南,等.基于离子液体吸收法的气体分离研究进展[J].煤炭学报,2018,43(3):704-716.

doi:10.13225/j.cnki.jccs.2017.0805

WANG Lanyun,LI Zhendong,WEI Yanan,et al.Gas separation by absorption in pure ionic liquids[J].Journal of China Coal Society,2018,43(3):704-716.

doi:10.13225/j.cnki.jccs.2017.0805

中图分类号:X511

文献标志码:A

文章编号:0253-9993(2018)03-0704-13

收稿日期:2017-06-13

修回日期:2017-10-12

责任编辑:常明然

基金项目:国家自然科学基金资助项目(51304073);中国博士后科学基金面上资助项目(2017M612396);河南理工大学创新型科研团队资助项目(T2018-2)

作者简介:王兰云(1983—),女,江苏泰州人,博士后。E-mail:lanyun.wang@gmail.com

通讯作者:魏建平(1971—),男,河南遂平人,教授,博士生导师。E-mail:weijianping@hpu.edu.cn