王延斌1,陶传奇1,倪小明2,高向东1,何云超1
(1.中国矿业大学(北京) 地球科学与测绘工程学院,北京 100083; 2.河南理工大学 能源科学与工程学院,河南 焦作 454000)
摘 要:为了揭示深部煤储层煤吸附特性,量化表征煤储层吸附气量,以鄂尔多斯盆地东缘石炭—二叠系煤为研究对象,通过高温高压条件下煤的等温吸附实验研究,从煤级、温度及压力的角度解读高温高压条件下煤吸附特征。基于吸附势理论,建立了不同煤级煤的吸附特征曲线及吸附气量预测模型。应用预测模型对临兴地区石炭系8+9号煤层吸附气量进行了计算,结果表明:深部煤储层吸附气量受煤级、压力、温度的综合控制,煤级在0.77%~2.18%,即气煤—贫煤阶段,煤级和压力对煤吸附能力显示正效应、温度起负效应,且随着压力增大温度的负效应更为显著。不同煤级对应的煤吸附甲烷特征曲线不同,煤级越高则吸附势随吸附空间增大而减小的速度越缓慢。计算的绝对吸附量为19.6~31.1 cm3/g,含气饱和度为37.8%~78.8%。
关键词:吸附势;深部煤层气;吸附特性;吸附气;临兴地区
中图分类号:P618.11
文献标志码:A
文章编号:0253-9993(2018)06-1547-06
王延斌,陶传奇,倪小明,等.基于吸附势理论的深部煤储层吸附气量研究[J].煤炭学报,2018,43(6):1547-1552.
doi:10.13225/j.cnki.jccs.2018.4044
WANG Yanbin,TAO Chuanqi,NI Xiaoming,et al.Amount of adsorbed gas in deep coal reservoir based on adsorption potential theory[J].Journal of China Coal Society,2018,43(6):1547-1552.
doi:10.13225/j.cnki.jccs.2018.4044
收稿日期:2018-02-28
修回日期:2018-04-12责任编辑:毕永华
基金项目:国家科技重大专项资助项目(2016ZX05066001-002)
作者简介:王延斌(1958—),男,安徽寿县人,教授。E-mail:wyb@cumtb.edu.cn
通讯作者:陶传奇(1988—),男,吉林公主岭人,博士研究生。E-mail:862439204@qq.com
WANG Yanbin1,TAO Chuanqi1,NI Xiaoming2,GAO Xiangdong1,HE Yunchao1
(1.College of Geoscience and Surveying Engineering,China University of Mining and Technology(Beijing),Beijing 100083,China; 2.School of Energy Science and Engineering,Henan Polytechnic University,Jiaozuo 454000,China)
Abstract:In order to reveal the deep coal reservoir adsorption characteristics of coal and the quantitative characterization on the amount of adsorbed gas of coalbed methane,this paper studied the coal samples of carboniferous-permian in eastern Ordos Basin and analyzed the methane isothermal adsorption experiments of high temperatures and pressures of coal samples.An interpretation of the adsorption characteristics was made under high temperatures and pressures from the geological factors including coal rank,temperature and pressure.The curves of coal adsorption characteristic and the prediction model of amount of adsorbed gas with different coal ranks were established based on the adsorption potential theory.Meanwhile,a case study on the amount of adsorbed gas of the No.8+9 coal seam in Linxing area was analyzed based on this model.The results show that the adsorption characteristics of deep coal reservoir are comprehensively influenced by temperature,pressure and coal rank.When the coal rank is between 0.77% and 2.18%,which is from gas coal to poor coal,the coal rank and pressure show a positive effect on adsorption ability,but temperature has a negative effect.In addition,the negative effect is more significant with the pressure increases.Different coal ranks have different curves of coal adsorption characteristic.The higher of coal rank,the slower of rate at which the adsorption potential decreases as the adsorption space increases.The calculation of the amount of absolute adsorbed is between 19.6 cm3/g and 31.1 cm3/g,and the gas saturation is between 37.8% and 78.8% in the study area.
Key words:adsorption potential;deep coalbed methane;adsorption characteristic;adsorption gas;Linxing area
煤层气的富集成藏研究是煤层气勘探开发的前提和基础。煤层气主要以吸附态赋存在煤基质孔隙中,少量以游离态与溶解态赋存在煤孔裂隙中,煤储层吸附气量的预测是煤储层含气量研究的重点[1-2]。以往研究多集中于埋深1 000 m以浅的煤层,对深部煤层含气性研究较少,我国学者将这个深部界定为1 000 m左右,深部煤储层煤吸附特性及含气量的准确预测成为难点问题[3-6]。描述煤吸附特性可用兰氏单分子层吸附理论,对煤吸附能力的讨论多基于等温吸附实验,但吸附实验仅能物理模拟一定压力下少量温度点的煤吸附特性,量化表征复杂多变温压地质条件下煤的吸附能力成为关键[7-8]。吸附势理论在描述非极性碳材料吸附气体上具有广泛的应用,近年来逐步被应用到煤吸附能力的评价上[9-11]。笔者基于煤高温高压等温吸附实验,探讨不同煤级、不同温压条件下煤的吸附特性,建立不同煤级煤的吸附特征曲线,构建基于吸附势理论的吸附气量预测模型。以临兴地区深部煤储层实测地质参数为依托,对深部煤储层的吸附气量进行计算。
吸附势理论是POLANYI(1914年)提出的适用于物理吸附的热力学理论。该理论的优势是可以充分表征温度和压力对吸附能力的影响,其核心思想是依据等温吸附实验数据建立吸附特性曲线。由吸附势理论建立的吸附势与压力的关系为
(1)
式中,P为平衡压力,MPa;ε为吸附势,J/mol;P0为甲烷虚拟饱和蒸汽压力,MPa;Pi为理想气体在恒温下的平衡压力,MPa;R为普适气体常数,取值为8.314 4 J/(mol·K);T为绝对温度,K。
由于甲烷在煤中的吸附已经处于临界温度之上,临界条件下的饱和蒸汽压力便失去了物理意义[12]。本次采用超临界条件下虚拟饱和蒸汽压力的计算公式[13]:
(2)
式中,Pc为甲烷的临界压力,取值为4.62 MPa;Tc为甲烷的临界温度,取值为190.6 K;k为与吸附体系有关的系数。
吸附空间是指一定温度、压力下煤中可供甲烷吸附的场所,由式(3)计算:
(3)
式中,w为吸附空间容积,cm3/g;Vad为绝对吸附量,mol/g;M为甲烷分子量,g/mol;ρad为吸附相密度,g/cm3。
吸附相密度由经验公式计算[14]:
ρad=ρbexp[-0.002 5(T-Tb)]
(4)
式中,ρb为沸点下甲烷密度,0.424 g/cm3;Tb为甲烷沸点温度,111.5 K。
在应用上述公式计算不同温度、不同压力下的吸附空间时,需要将Gibbs吸附量(视吸附量、实测吸附量)换算为绝对吸附量。通常用式(5)进行校正,同时将实测的标准状态下的吸附量换算成摩尔体积:
Vad=Vap/(1-ρg/ρad)
(5)
式中,Vap为视吸附量,mol/g;ρg为测试温度、压力条件下的气相密度,g/cm3。
甲烷气体不同温压下的气相密度计算方法如下,已知标准状态下甲烷的密度为0.000 717 g/cm3,假定甲烷为理想气体,则其他温压下1 cm3的甲烷体积和气相密度计算公式为
(6)
(7)
式中,P1为标准大气压,MPa;T1为标况下温度,K;ρ1为标况下甲烷密度,g/cm3;ρ2为其他温压下甲烷气体密度,g/cm3。
实验测试的2件煤样品来自鄂尔多斯盆地东缘石炭—二叠系,表1为煤样品的基本性质。不同温压条件下煤等温吸附实验仪器为Terratek公司生产的ISO-300型等温吸附实验仪,测试单位为华北油田勘探开发研究院。实验过程中,先将煤样破碎至60~80目,在30 ℃下进行平衡水分处理;实验用甲烷浓度为99.9%,实验数据依据兰氏单分子层理论进行处理;实验温度点和压力点的选择依据临兴地区8+9号煤层的测井井温和试井储层压力实测数据而定,实验温度分别设为30,45,60和75 ℃,吸附压力为0~25 MPa,最大平衡吸附压力为25 MPa左右。
表1 煤样品基本性质
Table 1 Basic properties of coal samples
压力的增加有利于煤吸附甲烷气体,2个煤级煤等温吸附数据均表现出这一规律。如图1所示,相同温度下,压力在5 MPa之前,煤吸附气量随压力的增大几乎呈线性增大;压力在5~20 MPa,随压力增大吸附气量的增加速度逐渐变缓;当压力超过20 MPa后,吸附气量增加速度不明显,即达到相对饱和状态。
图1 不同煤级煤CH4平衡水基等温吸附曲线
Fig.1 Methane isothermal adsorption curves with balancing water for diferent coal ranks
温度的增大不利于煤吸附甲烷气体,同一煤级相同压力下,随着温度的增加吸附气量减小。不同压力下煤吸附能力对温度的响应敏感性有所不同。以XG煤的吸附数据为例,温度为30 ℃条件下吸附气量与45,60和75 ℃不同温度、压力条件下的吸附气量的差值存在一定规律,见表2。随着吸附压力由5.8 MPa增大到22.0 MPa,吸附气量的差值呈增大的趋势,即随着压力的增大,煤吸附能力受温度影响程度增大。
表2 XG煤30℃下与不同温度、压力条件下吸附气量的差值
Table 2 Amount of adsorbed gas reduction in 30℃of XG coal sample at different pressures with other temperatures
为了反映不同煤级煤在高温、高压条件下的吸附特性,引用了前人研究成果(图2)[15]。如图2所示,肥煤、瘦煤和贫煤3个煤级煤吸附甲烷等温吸附曲线反映的吸附气量随温压变化的规律与气煤和焦煤实验结果具有相似性,即同一煤级条件下,温度和压力对煤吸附能力具有相似的影响规律。
图2 不同煤级煤CH4平衡水基等温吸附曲线[15]
Fig.2 Methane isothermal adsorption curves with balancing water for diferent coal ranks[15]
分析不同煤级煤等温吸附数据,结果表明煤吸附特性与煤成熟度关系密切。如图3所示。
图3 30 ℃下不同煤级煤的等温吸附曲线
Fig.3 Methane isothermal adsorption curves of different coal ranks at 30 ℃
以30 ℃等温吸附数据为例,相同吸附压力情况下,随着煤级的增大,吸附气量增大。这一规律在吸附压力为5~15 MPa时更为明显,当吸附压力小于5 MPa或大于15 MPa时煤级对吸附气量的差异影响相对偏小。分析原因为随着煤化作用的进行,煤成熟度从低煤级演化至高煤级过程中,煤微孔逐渐增多,可供气体吸附的空间增大,这是煤级控制煤吸附能力的重要原因[16-21]。
以煤高温高压等温吸附实验结果为依托,基于吸附势理论,见式(1)~(7),建立了不同煤级煤的吸附甲烷特征曲线(图4)。
图4 不同煤级煤的吸附特征曲线
Fig.4 Adsorption characteristic curves of different coal ranks
依据我国煤的类别中煤中镜质体最大反射率变化范围标准,5组实验煤的油浸最大镜质体反射率由小到大分别为气煤、肥煤、焦煤、瘦煤和贫煤[22]。由图4可以看出,不同煤级煤对应的吸附特征曲线斜率变化不同,煤级越高则吸附势随吸附空间增大而减小的速度越缓慢,其中焦煤和瘦煤差异较小。分析认为,煤的吸附特性与煤化作用的阶段性和跃变性是一致的,从低煤级演化至中高煤级阶段的过程中,煤中的微孔不断增多,孔比表面积不断增大,煤对CH4吸附能力增强[16-18]。气煤、肥煤、焦煤、瘦煤和贫煤的煤吸附甲烷特征曲线数学表达式分别为
ε1=-3.289lnw1-8.873 R2=0.97
(8)
ε2=-3.867lnw2-9.447 R2=0.98
(9)
ε3=-3.628lnw3-8.086 R2=0.98
(10)
ε4=-4.103lnw4-9.274 R2=0.98
(11)
ε5=-4.452lnw5-9.209 R2=0.99
(12)
前人通过对不同煤级煤等温吸附实验分析认为,煤储层在高温、高压地质条件下,煤显微组分、灰分产率对煤吸附能力的影响程度大幅减弱,深部条件下温度和储层压力是控制煤吸附特性的主导因素[3]。应用对温度、压力响应敏感的吸附势理论,结合不同煤级煤的吸附甲烷特征曲线,建立了吸附气量预测模型[23],表达式为
(13)
式中,V为绝对吸附气量,m3/t;a,b为与煤吸附能力有关的系数,由吸附特征曲线求取。
临兴地区位于鄂尔多斯盆地东缘的晋西挠褶带,总体为一西倾的单斜构造,受华北板块早白垩世构造事件影响,东侧中部形成以碱性杂岩体为主的紫金山岩浆构造隆起区[24-26]。上石炭统本溪组的8+9号煤为煤层气勘探开发主力煤层[27-28]。研究区煤层埋深除局部受岩体影响外,整体埋藏深度在1 700~2 150 m(图5)。煤镜质体最大反射率Ro,max主要集中在1.1%~1.4%,达到肥煤—焦煤阶段,部分受岩浆热作用影响区域Ro,max值增大,局部可达3%以上。
图5 研究区8+9号煤层埋深及镜质体反射率
Fig.5 Depth and coal rank of the No.8+9 coal seam in the study area
依据建立的煤吸附气量预测模型,以临兴地区石炭系本溪组8+9号煤层实测地质参数为例,计算了研究区深部煤储层吸附势、吸附空间及吸附气量,见表3,其中实测含气量依据GB/T 19559—2008《煤层气含量测定方法》测定。临兴地区8+9号煤层吸附势为1.56~2.14 kJ/mol,吸附空间为0.056~0.089 cm3/g,视吸附量为11.7~17.4 cm3/g,绝对吸附量19.6~31.1 cm3/g。研究表明绝对吸附量和视吸附量的差值随吸附平衡压力的增大而增大,煤的吸附性越强差值越大,绝对吸附量推导出的吸附参数可以更为真实的反映高压力下煤吸附甲烷量[29]。据此,计算的研究区煤储层含气饱和度为37.8%~78.8%。
表3 研究区8+9号煤吸附气量计算结果
Table 3 Predicted results of adsorbed gas of the No.8+9 coal seam in the study area
(1)深部煤储层吸附气量受煤级、储层压力和温度的综合控制。气煤—贫煤阶段,煤级的增大利于煤吸附甲烷气体;储层压力对煤吸附能力显示正效应;温度对煤吸附能力显示负效应,且储层压力越大负效应越为显著。
(2)吸附特征曲线的建立是应用吸附势理论预测煤吸附气量的核心,煤级不同使得吸附特征曲线存在差异,表现在与煤吸附能力有关的系数不同。
(3)煤储层温度、储层压力及煤级是深部煤储层吸附气量建模的重要地质参数,临兴地区8+9号煤层绝对吸附量为19.6~31.1 cm3/g,含气饱和度为37.8%~78.8%。
参考文献(References):
[1] 秦勇,申建.论深部煤层气基本地质问题[J].石油学报,2016,37(1):125-136.
QIN Yong,SHEN Jian.On the fundamental issues of deep coalbed methane geology[J].Acta Petrolei Sinica,2016,37(1):125-136.
[2] 孟召平,刘翠丽,纪懿明.煤层气/页岩气开发地质条件及其对比分析[J].煤炭学报,2013,38(5):728-736.
MENG Zhaopin,LIU Cuili,JI Yiming.Geological conditions of coalbed methane and their comparison and shale gas exploitation analysis[J].Journal of China Coal Society,2013,38(5):728-736.
[3] 赵丽娟,秦勇,申建.深部煤层吸附行为及含气量预测模型[J].高校地质学报,2012,18(3):553-557.
ZHAO Lijuan,QIN Yong,SHEN Jian.Adsorption behavior and abundance predication model of deep coalbed methane[J].Geological Journal of China Universities,2012,18(3):553-557.
[4] 刘大锰,李俊乾.我国煤层气分布赋存主控地质因素与富集模式[J].煤炭科学技术,2014,42(6):19-24.
LIU Dameng,LI Junqian.Main geological controls on distribution and occurence and enrichment patterns of coalbed methane in China[J].Coal Science and Technology,2014,42(6):19-24.
[5] 秦勇,申建,王宝文,等.深部煤层气成藏效应及其耦合关系[J].石油学报,2012,33(1):48-54.
QIN Yong,SHEN Jian,WANG Baowen,et al.Accumulation effects and coupling relationship of deep coalbed methane[J].Acta Petrolei Sinica,2012,33(1):48-54.
[6] 李辛子,王运海,姜昭琛,等.深部煤层气勘探开发进展与研究[J].煤炭学报,2016,41(1):24-31.
LI Xinzi,WANG Yunhai,JIANG Zhaochen,et al.Progress and study on exploration and production for deep coalbed methane[J].Journal of China Coal Society,2016,41(1):24-31.
[7] 郇璇,张小兵,韦欢文.基于不同类型煤吸附甲烷的吸附势重要参数探讨[J].煤炭学报,2015,40(8):1859-1864.
HUAN Xuan,ZHANG Xiaobing,WEI Huanwen.Research on parameters of adsorption potential via methane adsorption of different types of coal[J].Journal of China Coal Society,2015,40(8):1859-1864.
[8] 姜伟,吴财芳,姜玮,等.吸附势理论在煤层气吸附解吸研究中的应用[J].煤炭科学技术,2011,39(5):102-104.
JIANG Wei,WU Caifang,JIANG Wei,et al.Application of adsorption potential theory to study on adsorption-desorption of coalbed methane[J].Coal Science and Technology,2011,39(5):102-104.
[9] 李明,顾安忠,鲁雪生,等.吸附势理论在甲烷临界温度以上吸附中的应用[J].天然气化工,2003,28(5):28-31.
LI Ming,GU Anzhong,LU Xuesheng,et al.Study on methane adsorption above cirtical temperature by adsorption potential theory[J].Natural Gas Chemical Industry,2003,28(5):28-31.
[10] 苏现波,林萌,林晓英,等.吸附势理论在煤层甲烷吸附中的应用[J].中国煤层气,2006(2):28-30.
SU Xianbo,LIN Meng,LIN Xiaoying,et al.Study of methane adsorption on coal with adsorption potential theory[J].China Coalbed Methane,2006(2):28-30.
[11] 钟玲文,郑玉柱,员争荣,等.煤在温度和压力综合影响下的吸附性能及气含量预测[J].煤炭学报,2002,27(6):581-585.
ZHONG Lingwen,ZHENG Yuzhu,YUN Zhengrong,et al.The adsorption capability of coal and pressure and predicted under integrated influence of temperature of content quantity of coal bed gas[J].Coal Science and Technology,2002,27(6):581-585.
[12] 高然超.基于吸附势理论的构造煤甲烷吸附/解吸规律研究[D].焦作:河南理工大学,2012:13-26.
GAO Ranchao.The adsorption/desorption of methane on tectonic coal based on adsorption potential theory[D].Jiaozuo:Henan Polytechnic University,2012:13-26.
[13] AMANKWAH K A G,SCHWARZ J A A.Modified approach for estimating pseudo-vapor pressures in the application of the dubinin-astakhov equation[J].Carbon,1995,33(9):1313-1319.
[14] OZAWA S,KUSUMI S,OGINO Y J.Physical adsorption of gases at high pressure(IV):An improvement of the Dubinin-Astakhov adsorption equation[J].Colloid & Interface Science,1976,56:83-91.
[15] 赵丽娟,秦勇,WANG Geoff,等.高温高压条件下深部煤层气吸附行为[J].高校地质学报,2013,19(4):648-654.
ZHAO Liguan,QIN Yong,WANG Geoff,et al.Adsorption behavior of deep coalbed methane under high temperatures and pressures[J].Geological Journal of China Universities,2013,19(4):648-654.
[16] 秦勇.中国煤层气成藏作用研究进展与述评[J].高校地质学报,2012,18(3):1-6.
QIN Yong.Advances and reviews on coalbed methane reservoir formation in China[J].Geological Journal of China Universities,2012,18(3):1-6.
[17] PRIBYLOV A A,SERPINSKY V V,KALASHNILOV S M.Adsorption of gases by microporous aapascals[J].Zeolites,1991:11:846-849.
[18] SINGH ALOK K.Petrographic characterization and evolution of the Karharbari coals,Talcher Coalfield,Orissa,India[J].International Journal of Coal Science & Technology,2016,3(2):133-147.
[19] 秦勇,申建,沈玉林.叠置含气系统共采兼容性——煤系“三气”及深部煤层气开采中的共性地质问题[J].煤炭学报,2016,41(1):14-23.
QIN Yong,SHEN Jian,SHEN Yulin.Joint mining compatibility of superposed gas-bearing systems:A general geological problem for extraction of three natural gases and deep CBM in coal series[J].Journal of China Coal Society,2016,41(1):14-23.
[20] 张松航,唐书恒,万毅,等.晋城无烟煤煤中CH4和CO2运移规律研究[J].中国矿业大学学报,2012,41(5):770-775.
ZHANG Songhang,TANG Shuheng,WAN Yi,et al.The migration of CH4and CO2in Jincheng anthracite coal[J].Journal of China University of Mining and Technology,2012,41(5):770-775.
[21] 傅宁,杨树春,贺清,等.鄂尔多斯盆地东缘临兴-神府区块致密砂岩气高效成藏条件[J].石油学报,2016,37(S1):111-120.
FU Ning,YANG Shuchun,HE Qing,et al.High-efficiency reservoir formation conditions of tight sandstone gas in Linxing-Shenfu blocks on the east margin of Ordos Basin[J].Acta Petrolei Sinica,2016,37(S1):111-120.
[22] 陈家良,邵震杰,秦勇.能源地质学[M].徐州:中国矿业大学出版社,2004:94-95.
[23] 苏现波,陈润,林晓英,等.吸附势理论在煤层气吸附/解吸中的应用[J].地质学报,2008,82(10):1382-1389.
SU Xianbo,CHEN Run,LIN Xiaoying,et al.Application of adsorption potential theory in the fractionation of coalbed gas during the process of adsorption/desorption[J].Acta Geologica Sinica,2008,82(10):1382-1389.
[24] 顾娇杨,张兵,郭明强.临兴区块深部煤层气富集规律与勘探开发前景[J].煤炭学报,2016,41(1):72-79.
GU Jiaoyang,ZHANG Bing,GUO Mingqiang.Deepcoalbed methane enrichment rules and its exploration and development prospect in Linxing block[J].Journal of China Coal Society,2016,41(1):72-79.
[25] 余学海,孙平,张军营,等.神府煤矿物组合特性及微量元素分布特性定量研究[J].煤炭学报,2015,40(11):2683-2689.
YU Xuehai,SUN Ping,ZHANG Junying,et al.Quantitative investigations on mineral matter and distributions of trace elements in Shengfucoal[J].Journal of China Coal Society,2015,40(11):2683-2689.
[26] 李勇,汤达祯,许浩,等.鄂尔多斯盆地东缘“翘板”支点影响下的含煤地层发育特征[J].煤炭学报,2012,37(S2):378-382.
LI Yong,TANG Dazhen,XU Hao,et al.Characterization of coal bearing strata under influence of “seesaw”fulcrum in east margin of Ordos Basin[J].Journal of China Coal Society,2012,37(S2):378-382.
[27] 郭本广,许浩,孟尚志,等.临兴地区非常规天然气合探共采地质条件分析[J].洁净煤技术,2012,18(5):110-112,115.
GUO Benguang,XU Hao,MENG Shangzhi,et al.Geology condition analysis for unconventional gas co-exploration and concurrent production in Linxing area[J].Clean Coal Technology,2012,18(5):110-112,115.
[28] 申建,张春杰,秦勇,等.鄂尔多斯盆地临兴地区煤系砂岩气与煤层气共采影响因素和参数门限[J].天然气地球科学,2017,28(3):479-487.
SHEN Jian,ZHANG Chunjie,QIN Yong,et al.Effect factors on co-mining of sandstone gas and coalbed methane in coal series and threshold of parameter in Linxing block,Ordos Basin[J].Natural Gas Geoscience,2017,28(3):479-487.
[29] 杨兆彪,秦勇,高弟,等.超临界条件下煤层甲烷视吸附量、真实吸附量的差异及其地质意义[J].天然气工业,2011,31(4):13-16,122.
YANG Zhaobiao,QIN Yong,GAO Di,et al.Differences between apparent and true adsorption quantity of coalbed methane under supercritical conditions and their geological significance[J].Natural Gas Industry,2011,31(4):13-16,122.