煤炭开采作为人类的生产活动,打破了生态系统原有的平衡和稳定性。露天采煤严重地破坏了地表植被和土壤结构,影响了土壤微生物群落[1-3];同时形成了不同时期土壤重构的排土场景观。与天然草原土壤相比,排土场的土壤结构、理化性质和生物特性变化较大,影响着植物的建植、生存和生长,尤其是在干旱、半干旱生态脆弱区,影响较严重且不可逆[4]。因此,在煤炭生产的同时用不同的重建模式对矿区排土场进行植被恢复,并采用不同的管理措施,会造成不同时期的排土场植被演替进程和景观的差异[5-6]。
丛枝菌根真菌(Arbuscular mycorrhizal fungi,AM fungi)是一种在自然界广泛分布的土壤微生物,能够与陆地上80%~90%的植物共生,形成互利共生体[7-8];许多研究证实AM真菌在特定栖息地或生态系统之间的种类丰富度和群落组成具有高度可变性[9],而且,AMF能够增强植物对磷(P)、锌(Zn)、氮(N)和铁(Fe)等低迁移率养分的吸收和转移。另外接种AM真菌的研究表明,菌根能有效的促进植物生长[10]。同时AM真菌表现出增加土壤肥力、提高土壤酶活性等的重要作用[11]。AMF除了吸收矿物质养分外,还能稳定土壤结构,使植物在干旱、盐碱和有毒土壤等胁迫条件下生存[12],影响土壤过程、植物多样性和陆地生态系统的可持续性[13]。因此,选择露天采煤生产形成的排土场作为研究对象,探索排土场植物群落演替和土壤修复过程中AM种群的变化,不仅对排土场生态修复具有评判作用、而且对区域AM真菌资源的进一步开发利用产生积极的影响。
研究区位于内蒙古锡林浩特市胜利煤田露天矿(东经115.500°~116.433°,北纬43.950°~44.233°)南、北排土场及矿外原生草原[14]。矿外天然植被为大针茅(Stipa grandis)建群的典型草原群落;南排土场以人工种植的紫花苜蓿(Medicago sativa)建群、北排土场人工植被退化并以野生蒿属(Artemisia)植物建群。
2017年7月对矿区内南、北排土场顶盘和南坡平盘、矿外西线距离矿坑2 500 m的原生草原群落(对照)进行了植被调查和土壤样品的采集。每个样地分别选取3个1 m×1 m的样方,采用生态学常规方法统计样方内植物的种类及数量见表1。5点取样法采集0~30 cm土壤样品1.5 kg,混合均匀置于无菌塑料袋内,带回实验室,自然晾干,一部分用于AM真菌的分离筛选,一部分用于土壤理化性质的测定。
土壤理化性质的测定,含水量采用烘干法,pH值采用玻璃电极法(土∶水=1∶2.5的比例混合),速效磷、铵态氮和有效钾用浙江托普云TPY-6PC土壤养分速测仪,全磷采用氢氧化钠熔融—钼锑抗比色法,全氮、全碳利用元素分析仪(Elementar Vario Macro Cube)进行测定。
表1 样地信息
Table 1 Sample area information
样地名称样地简称经纬度植被盖度/%主要种植物原生草原OG115.976°E,44.000°N45.24±0.31大针茅(Stipa grandis)、羊草(Leymus chinensis)、猪毛菜(Salsola collina)南排土场顶盘SP116.050°E,44.006°N27.78±0.65紫花苜蓿(Medicago sativa)、大针茅(Stipa gran-dis)、猪毛菜(Salsola collina)南排土场南侧平盘SF116.054°E,44.000°N25.65±0.31紫花苜蓿(Medicago sativa)、大籽蒿(Artemisia siev-ersiana)、小叶锦鸡儿(Caragana microphylla Lam)北排土场顶盘NP116.042°E,44.034°N20.26±0.21丛生隐子草(Cleistogenes caespitosa)、小叶锦鸡儿(Caragana microphylla Lam)、大籽蒿(Artemisia siev-ersiana)北排土场南侧平盘NF116.043°E,44.028°N10.62±0.81冰草(Agropyron cristatum)、大籽蒿(Artemisia siever-siana)、猪毛菜(Salsola collina)
土壤的过氧化氢酶、蔗糖酶和脲酶等理化性质采用苏州科铭生物公司(Comin Biotechnology Co.,Ltd.,Suzhou,China)试剂盒进行测试。
采用湿筛倾注-蔗糖梯度离心法[15]对AM真菌孢子进行分离,采用透射法,使用Leica EZ4解剖镜在25×视野下进行AM真菌孢子的初步分类与计数,并吸取孢子分别用PVLG和PVLG+Melzer’s试剂染色制片,用Leica DM5500B显微镜观察和摄像。根据孢子的形态与组织化学特征,参照AM真菌分类鉴定手册和新的分类系统进行种类的鉴定,并统计AM真菌孢子形态物种多样性[16]。
采用Excel(2013版)对实验数据进行初步统计分析;采用SPSS 20.5(SPSS Inc.,Armonk,NY,USA)单因素分析(One-way ANOVA)对植物物种多样性、土壤理化性质、土壤酶活性及AM真菌多样性进行组内显著性差异分析。采用冗余分析(Redundancy Analysis,RDA)分析微生物与环境因子的关系,用CANOCO 5.0 软件进行可视化[17]。
对北电胜利煤电基地的5个样地,通过样方法进行植被调查,统计样方内每种植物(草本)的株数,植物多样性采用香农-维纳多样性指数(Shannon diversity index)表示,结果如图1所示。样地间植物多样性的变化趋势关系呈OG>SP>SF>NP>NF,其中原生草原样地显著高于南排土场样地SP,SF(P<0.05),南排土场样地SP,SF显著高于北排土场样地NP,NF(P<0.05)。同时,排土场顶盘的植物多样性高于南坡平盘,但没有达到显著差异水平(P>0.05)。结果表明,在北电胜利煤电基地排土场的植被修复过程中,采用适当的人工管护(定期浇灌)比自然修复(没有浇灌)的效果明显,但拟达到自然演替的原生草原植物多样性仍需要一定时期的变化过程。排土场定盘和平盘植物多样性的差异可能与人为管护(灌溉)水平以及定盘更容易保存降雨,而南坡平盘更易水土流失有关[18]。
图1 植被物种多样性比较分析
Fig.1 Comparative analysis of plant species diversity analysis of AMF relative abundance
对采集的北电胜利煤电基地5个样地的土壤,通过湿筛倾析法分离提取AMF的孢子,共筛选出24个种,并利用Pearson相关性系数进行关联矩阵分析,结果如图2所示。Glomus reticulatum、Septoglomus deserticola分别以强优势种出现在不同的样地中,而多数的AMF在各样地中具有较低的丰度,Acaulospora sp1是内蒙古草原广泛分布的种类,出现在原生样地中,但在排土场其孢子的数量和出现的频度均较低;而Septoglomus deserticola在原生样地并不是优势的种类,但在排土场呈现出建群或优势种的趋势。部分属种表现出较强的样地偏好性,Scutellospora calospora最为典型,在SF中表现出最高的丰度。这些AMF种属在不同样地分布性的差异,可能与AMF对宿主植物的偏好性有关,尽管在自然生态系统中约80%以上的草本类植物与AM真菌共生,但对寄主植物有一定的选择性[19]。排土场植被建设选取了易于人工种植和栽培的植物,通常不同于原生群落,因此导致排土场土壤AM真菌种类与原生群落之间的不同;另外排土场土壤性质的变化可能影响土壤微生物或改变了土壤AM真菌群落的物种组成[20]。
图2 AMF相对丰度关联分析
Fig.2 Separation frequency correlation between different sites
AMF孢子相对丰度的关联矩阵分析显示,OG和SP被聚类在一个簇上,SF和NP在一个簇上,说明OG与SP,SF与NP的AMF分布具有强关联性,可能受群落的主要植物物种多样性的影响(表1)。许多研究认为寄主植物与AMF是密切相关的[21],探索寄主植物和AMF种类的相关性对揭示生物物种间的作用关系具有重要的理论意义[22-23]。
土壤中AMF多样性用香农-维纳多样性指数(Shannon diversity index)表示,结果如图3所示。研究样地间AMF孢子多样性的变化关系为OG>SP>SF>NP>NF,与植物多样性的结果具有一致性,这与前人的研究结果相似[24]。北排土场在人工建成后放弃管护,导致了人工建植的植物种群成活率低、植物多样性的降低;尽管自然演替植被恢复进程较慢,但一些原生植物种类如在退化草原出现的蒿类植物物种得到了的恢复;引起了植物种群的竞争和群落组成的变化,使与植物共生的AMF孢子物种多样性发生改变。排土场经过人工植被建设后,土壤AMF的定殖增加,而且人工浇水管护条件下南排土场的AMF多样性高于没有管护的北排土场。可见人工浇灌更利于植物的定殖、水土保持,进而有利于植物根系共生的AMF的繁殖。
图3 AMF多样性比较分析
Fig.3 Comparative analysis of AMF diversity
为了探究AMF与各环境因子之间的响应关系,利用冗余分析Redundancy Analysis(RDA)进行约束性线性直接梯度排序,建立线性回归模型,如图4所示。第1轴解释变量为37.81%,第2轴解释变量为32.63%。各样地均匀分布在各微生物与环境因子当中,它们之间的矩阵距离的结果与图2一致,SF与NP,OG与SP分别紧密相关。植物多样性、AMF多样性及植物生物量呈显著正相关,且大部分的环境因子(如AP,AN,TN,TC,ALP)都与它们紧密正相关,pH,AK,CAT与它们呈显著负相关。AMF都紧密环绕在这些环境因子当中,说明AMF的丰度与土壤环境因子密切相关[25]。只有G.aggregatum与这些环境因子呈现较弱的相关性,说明该物种对环境变量不敏感,能较好的适应各种环境。
图4 AMF与环境因子关联分析
Fig.4 Correlation analysis between AMF and environmental factor
(1)在北电-胜利煤电基地矿区,矿外自然草原群落的植物多样性、植物群落盖度及土壤AMF的多样性高于排土场的人工植被,持续人工浇水管护的南排土场的高于近自然修复的北排土场。
(2)研究区土壤AMF多样性不仅与植物多样性和植物群落生物量显著正相关,与环境因子AP,AN,TN,TC,ALP呈显著正相关,与pH,AK,CAT呈显著负相关。同时,人工建植及浇灌措施有利于排土场植被恢复及土壤AMF多样性的增加。
因此,在露天煤矿排土场植被恢复演替与生态修复的进程中,采取人工建植并保持有效的管护措施是非常必要的,加强人工建植对矿区排土场土壤的修复作用、尤其是对土壤微生物种群多样性变化的影响具有重要的恢复生态学理论意义。
[1] ROCHELLE G T.Amine scrubbing for CO2 Capture[J].Science,2009,325(5948):1652-1654
[2] WANG G,YE C,ZHANG J,et al.Asymmetric facilitation induced by inoculation with arbuscular mycorrhizal fungi leads to overyielding in maize/faba bean intercropping[J].Journal of Plant Interactions,2019,14(1):10-20.
[3] TRESEDER K K,ALLEN E B,EGERTON-WARBURTON L M,et al.Arbuscular mycorrhizal fungi as mediators of ecosystem responses to nitrogen deposition:A trait-based predictive framework[J].Journal of Ecology,2018,106(2):480-489.
[4] CHATURVEDI R,FAVAS P.PRATAS J.et al.Assessment of edibility and effect of arbuscular mycorrhizal fungi on Solanum melongena L.grown under heavy metal(loid) contaminated soil[J].Ecotoxicology & Environmental Safety,2018,148:318-326.
[5] SUDING K N,GROSS K L,HOUSEMAN G R.Alternative states and positive feedbacks in restoration ecology[J].Trends in Ecology & Evolution,2004,19(1):46-53.
[6] LIN Jixiang,PENG Xiaoyuan,HUA Xiaoyu,et al.Effects of arbuscular mycorrhizal fungi on Leymus chinensis seedlings under salt-alkali stress and nitrogen deposition conditions:From osmotic adjustment and ion balance[J].Rsc Advances,2018,8(26):14500-14509.
[7] VAN H M G A,KLIRONOMOS J N.Mycorrhizal fungal diversity determines plant biodiversity,ecosystem variability and productivity[J].Nature,1998,396(6706):69-72.
[8] WARDLE D A.Ecological linkages between aboveground and belowground biota[J].Science,2004,304(5677):1629-1633.
[9] PARNISKE M.Arbuscular mycorrhiza:The mother of plant root endosymbioses[J].Nature Reviews Microbiology,2008,6(10):763-775.
[10] PHILIPPOT L,RAAIJMAKERS J M,LEMANCEAU P,et al.Going back to the roots:The microbial ecology of the rhizosphere[J].Nature Reviews Microbiology,2013,11(11):789-799.
[11] BAINARD L D,KOCH A M,GORDON A M,et al.Temporal and compositional differences of arbuscular mycorrhizal fungal communities in conventional monocropping and tree-based intercropping systems[J].Soil Biology & Biochemistry,2012,45(45):172-180.
[12] WALTER J,KREYLING J,SINGH B K,et al.Effects of extreme weather events and legume presence on mycorrhization of Plantago lanceolata and Holcus lanatus in the field[J].Plant Biology,2016,18(2):262-270.
[13] AGNIESZKA J,ANDRZEJ K,ANNA G,et al.Impact of abiotic factors on development of the community of arbuscular mycorrhizal fungi in the soil:A Review[J].International Agrophysics,2018,32(1):133-140.
[14] LEI Shaogang,REN Lixin,BIAN Zhengfu.Time-space characterization of vegetation in a semiarid mining area using empirical orthogonal function decomposition of MODIS NDVI time series[J].Environmental Earth Science,2016,75(6):516.
[15] MNICA A L,MARTA N C.Native arbuscular mycorrhizal fungi (AMF) from mountain grassland (Córdoba,Argentina) I.Seasonal variation of fungal spore diversity[J].Mycologia,2002,94(4):579-586.
[16] ROSENDAHL S.Communities,populations and individuals of arbuscular mycorrhizal fungi[J].New Phytologist (Online),2008,178(2):253-266.
[17] WEI Yuquan,ZHAO Yue,LU Qian,et al.Organophosphorus-degrading bacterial community during composting from different sources and their roles in phosphorus transformation[J].Bioresource Technology,2018,264,277-284.
[18] HUANG Lei,ZHANG Peng,HU Yigang,et al.Vegetation and soil restoration in refuse dumps from open pit coal mines[J].Ecological Engineering,2016,94(1):22-35.
[19] CAVAGNARO T R,SMITH F A,LORIMER M F,et al.Quantitative development of Paris-type arbuscular mycorrhizas formed between Asphodelus fistulosus and Glomus coronatum[J].New Phytology,2001,149:105-113.
[20] JOHANNES L,MATTHIAS C,RILLIG J T,et al.Biochar effects on soil biota-A review[J].Soil Biology and Biochemistry,2011,43(9):1812-1836.
[21] WANG B,QIU Y L.Phylogenetic distribution and evolution of mycorrhizas in land plants[J].Mycorrhiza,2006,16:299-363.
[22] WAGG C,BENDER S F,WIDMER F,et al.Soil biodiversity and soil community composition determine ecosystem multifunctionality[J].Proceedings of the National Academy of Science,2014,111(14):5266-5270.
[23] ÖPIK M,VANATOA A,VANATOA E,et al.The online database Maarj AM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota)[J].New Phytologist,2010,188:223-241.
[24] THOMAS W,SCOTT E,TOBY K,et al.West.Evolutionary maintenance of genomic diversity within arbuscular mycorrhizal fungi[J].Ecology and Evolution,2019,9(5):2425-2435.
[25] SMITH S E,JAKOBSEN I,GRØNLUND M,et al.Roles of arbuscular mycorrhizas in plant phosphorus nutrition:Interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition[J].Plant Physiology,2011,156(3):1050-1057.