湖南新化天龙山岩体侵位对煤系变形变质的构造效应

李焕同1,陈 飞1,邹晓艳2,左晓峰1,莫佳峰3,韩 雪1,陈 茜1

(1.西安科技大学 地质与环境学院,陕西 西安 710054; 2.中国矿业大学(北京) 地球科学与测绘工程学院,北京 100083; 3.湖南省煤炭地质勘查院,湖南 长沙 410014)

摘 要:煤对应力、应变和温度十分敏感,在多期次、多层次的构造-热运动下必然会留下各种应力作用(静压力和构造应力)痕迹。采用工业分析、元素分析、XRD,SEM及ICP-MS等方法,探讨了新化中生代天龙山岩体侵位对煤系变形变质、煤结构变化的构造效应以及元素迁移富集的应力-应变环境响应。研究结果表明:天龙山岩体侵位引起的岩浆热及构造应力作用,促进煤化程度升高逐渐转变为隐晶质石墨,煤及围岩出现大量热变质矿物;岩体侵位施加放射状挤压应力集中带,节理与岩组主压应力轴方位与岩体边界近于垂直,靠近岩体构造变形增强;构造应力与岩浆热变质叠加作用对煤的大分子结构影响显著,d002值、La/Lc分别随变质程度降低及远离岩体而减小。岩体附近煤层受岩浆热作用显著,岩浆侵位的构造效应(机械能、热能及化学能)造成煤岩结构破坏、变质程度升高以及元素富集、迁移,煤中REE含量增加;稀土元素球粒陨石标准化分配模式曲线特征可划分为3种类型,其中A型与C1型靠近岩体叠加了岩浆热变质作用,与泥盆纪灰岩及硅化灰岩稀土元素分配模式曲线相似,岩浆热液使围岩矿化,但局限于蚀变带。岩浆热变质作用驱使稀土元素向富轻稀土方向演化,构造应力驱使稀土元素向着富重稀土的方向演化,导致ΣL/ΣH比值偏低。

关键词:天龙山岩体;煤系变形变质;X射线衍射分析;稀土元素;构造效应

印支期、燕山期以来的构造变形,对湘中地区煤系变形和赋存起到关键性的控制作用,原型煤盆地遭受强烈破坏,发育了多种褶皱构造样式、断裂组合样式和多期构造叠加、改造,使煤系赋存状态复杂化,具有显著的时空差异性[1]。煤是对应力、应变和温度十分敏感的有机岩,构造-热事件对煤岩组分、结构和构造变化以及元素迁移和聚散等方面在起着显著控制作用[2-4],曹代勇等[3-4]提出了构造应力影响煤化作用的两种基本方式,即应力降解和应力缩聚,加深了对煤化作用实质的认识;国内外学者[5-10]对不同地区、不同地质时代煤中稀土元素分布、赋存状态及成因等进行广泛研究,而较少探讨煤中元素的分布、迁移与聚集是对应力-应变环境的响应[2,11-12]。尽管已经注意到岩浆作用对新化地区测水煤系煤高演化程度的影响[13-18],但是尚未深入分析印支期岩体侵位对煤系变形变质、煤结构变化的构造效应以及元素迁移富集的应力-应变环境响应。因此,笔者在此基础上,揭示煤变形变质特征与构造环境关系,对于认识煤系构造变形复杂性、煤炭资源科学开发利用具有重要意义。

1 区域地质背景

1.1 构造格局

新化地区位于雪峰山构造带东缘(图1(a)),测水煤系构造变形强烈,褶皱、断裂发育,一系列平行排列轴向北东—北北东的褶皱以及走向逆冲断层构成本区基本构造格局[1]。寒婆坳向斜位于新化地区南部,向斜两翼不对称,西翼倾角60°~88°,局部直立或倒转,向斜中南部被天龙山岩体侵位而不完整(图1(b));东翼被寒婆坳逆冲推覆断层的上盘推覆体掩盖,泥盆系及石炭系下统叠覆于二叠系之上;在天龙山岩体侵位及寒婆坳逆冲推覆断层(F1)的挤压作用下,还发育北东或北西向的次级断裂。

图1 寒婆坳向斜地质简图
Fig.1 Geological sketch map of Hanpo’ao syncline

1.2 煤系及煤层

寒婆坳向斜出露泥盆系上统,石炭系下统孟公坳组、石磴子组、测水组、梓门桥组,石炭系中上统壶天群,二叠系下统栖霞组、当冲组等。测水组含煤地层为一套滨海海陆交互相的含煤碎屑沉积,分为上、下两段,上段不含煤,厚约54.2 m。下段为含煤段厚60 m左右,主要由灰黑色砂质页岩、炭质页岩夹细砂岩及2~3层煤层组成,其中可采煤层为3,5煤层。

3煤层厚度为0.1~5.0 m,不稳定,煤层结构复杂,向北夹矸层数减少;煤层直接顶底板为砂质页岩或炭质页岩;煤层上部为半暗至半亮型煤,较松散,呈粒状、鳞片状,下部为半亮型煤,呈块状。5煤层厚度为0.3~3.2 m,较稳定,煤层结构简单,一般不含夹矸;煤层顶板为细砂岩,底板为灰黑色粉砂岩或砂质页岩;为半亮型煤,具条带状结构。3,5煤属于中低灰、低硫~中低硫,高发热量无烟煤。由于岩侵位煤层使其逐渐变质为隐晶质石墨,矿石自重增加,北部煤层的密度为1.7~1.9 t/m3,南部石墨矿的密度达到1.98~2.02 t/m3[13]

1.3 天龙山岩体

天龙山岩体位于寒婆坳向斜西侧,产于北东—北北东向左行剪切的桃江—城步断裂带中。天龙山岩体锆石U-Pb年龄为196~210 Ma[16],属T3—J1时期,岩性主要为中粒(斑状)黑云母二长花岗岩和黑云母花岗闪长岩。岩体东部与围岩接触呈不规则锯齿状,接触面产状与围岩基本一致,浅部倾角达60°~80°,向深部逐渐变缓。受岩体侵位影响,围岩挤压变形强烈,在岩体东部形成宽0.4~1.5 km的接触变质带[17],变质相主要为角闪石角岩相,属中级变质,岩浆温度300~500 ℃。

2 实验方法

研究区内所采煤样均为井下煤层煤样。煤中水分、灰分和挥发分依据GB/T 212—2008《煤的工业分析方法》测定;煤中C,H,N元素采用西安科技大学元素分析仪Elemental Analyzer Vario El II,检出限为0.03~2.00 mg;煤镜质体反射率依据GB/T 6948—2008《煤的镜质体反射率显微镜测定方法》测定。此次选择部分煤样,将其磨碎至200目脱矿后,在西安科技大学地环学院实验中心的X射线衍射仪上进行了测定。测定条件为:Co靶、管压36 kV、管流20 mA、狭缝为1,0.30,1、步宽0.01、扫描速度4°/min。稀土元素在澳实分析检测(广州)有限公司完成,采用ME-rMS61r四酸消解法电感耦合等离子体质谱Perkin Elmen Elan9000检测稀土元素含量,对于全部稀土元素精度高于10%。

3 结果与讨论

3.1 煤系变形变质特征

3.1.1 煤系构造变形与成因

寒婆坳向斜地质简图显示(图1),天龙山岩体以东的轴向近南北的褶皱和断裂在岩体附近发生偏转,构造变形强度向南增强,向斜西翼浅部地层产状逐渐倒转。据野外地质调查证实,天龙山岩体周边地层产状呈规律性变化,走向与岩体边界趋于一致性。岩体东部石槽铺附近测水组地层倒转(264°∠41°),远离岩体地层倒转倾角变陡(茅口组269°∠77°,测水组289°∠83°)。根据共轭剪节理及岩组分析反演结果,初步确定岩体东缘存在最大主压应力轴与岩体边界近于垂直的放射状应力场(表1,2)。

表1 天龙山岩体东侧节理组应力分析
Table 1 Stress analysis result of joint set in the east side of Tianlongshan granite body

观测点编号层位节理组Ⅰ节理组Ⅱσ1σ2σ3复平后赤平投影主压应力轴方位G153C1c167°∠87°54°∠33°134°∠43°79°∠31°10°∠31°北西—南东G161C1c53°∠89°61°∠87°57°∠2°142°∠74.12°147°∠16°北东—南西G160C1m325°∠82°342°∠87°153°∠6°83°∠72.58°61°∠16°北西—南东G159C1c63°∠86°343°∠79°23°∠10°175°∠78°112°∠5°北东—南西

表2 天龙山岩体东侧岩组分析
Table 2 Petrofabric analysis in the east side of Tianlongshan granite body

编号层位岩性岩层产状岩组图对称型优选方位构造岩类型滑移系结构面性质变形作用方式极密点方位主压应力轴方位G153C1c细砂岩133°∠43°单斜对称点极密型S型底面压性纯剪切313°∠32°北西—南东 G161C1c石英砂岩235°∠40°三斜对称点极密型B+S型底面压性复合143°∠67°北东—南西

在靠近天龙山的构造岩样薄片中常见石英波状消光、云母扭折带等韧性变形(图2,G161)的原因,应是在浅层低温高压环境下由石英颗粒内部滑移和粒间旋转产生;而远离岩体的构造岩样薄片中常见晶内裂隙、晶间裂隙、穿晶裂隙等脆性变形(图2,G153),反映受岩体影响弱的低温低压脆性变形环境。

图2 构造岩样变形显微构造
Fig.2 Microstructures in rock samples

3.1.2 煤的变形变质特征

寒坡坳向斜测水煤系赋存条件复杂,均为小煤矿开采,由南向北主要分布有三尖、石巷里、稗冲、胜利、稠木及红寨等煤矿(图1)。在多期构造应力作用下,煤的原生结构、构造发生不同程度的碎裂或韧性变形或叠加破坏甚至达到内部化学成分和结构变化。寒婆坳向斜西翼由于受到天龙山岩体的挤压,靠近岩体构造变形逐渐增强(表3),揉皱强烈者煤体结构呈碎裂、碎粒、鳞片、碎粉状;变形轻者呈层状,强烈呈不规则的团块状或粉状构造(图3)。不同构造变形煤在扫描显微镜下有不同的显微结构构造、破碎程度、碎块形态和揉皱等变形特征,岩浆热变质作用影响下,显示镶嵌结构、气孔等特征,细小鳞片状隐晶质石墨颗粒粒径变化于50~250 nm(图3)。岩体附近变形煤的Ro,max变化于5.46%~7.89%,均值为6.55%(表3);挥发分变化于4.21%~6.95%,均值5.13%,均属于高变质无烟煤。靠近岩体煤变质程度升高(图4),煤大分子结构趋向均一化、有序化,XRD衍射图出现明显的石墨衍射峰(002峰与100峰),高煤级煤样的002峰变窄变高(图5,SXL130),而相对变质程度低一些煤样的002峰低且宽缓(图5,CM130N34),芳香层片间距d002值变化于0.336 6~0.355 8 nm,d002值、La/LcRo,max呈明显正相关关系,且d002值随远离岩体增大,La/Lc远离岩体而减小(图6)。换而言之,地质历史时期存在使煤变质程度升高的热源机制(即天龙山岩体侵位),异常地温与应力作用不断使煤变质程度升高,甚至石墨化,煤及围岩出现大量热变质矿物,对煤中稀土元素的赋存状态亦产生重要影响。

3.2 煤中稀土元素分布特征

新化寒坡坳向斜稠木煤矿、胜利煤矿、稗冲煤矿及石巷里煤矿煤中稀土元素∑REE总平均含量分别为52.0×10-6,66.7×10-6,44.7×10-6和172.23×10-6;各煤矿3号煤层样品中∑REE平均含量分别为66.94×10-6,88.40×10-6,38.98×10-6和200.82×10-6;各煤矿5号煤层样品中∑REE平均含量分别为37.12×10-6,23.21×10-6,50.39×10-6和143.65×10-6;与马东升等[19]统计的湘中盆地煤中稀土元素总量(68.80×10-6)相比,仅石巷里煤矿平均值较高;显示岩浆侵位使煤中REE含量增加。

表3 寒坡坳向斜煤矿煤样变形变质综合测试成果
Table 3 Integrative experimental result of coal samples in Hanpo’ao syncline

位置编号煤层Ro,max/%工业分析/%MadAdVdafFCad元素分析/%NCHH/CN/Cd002/nmLa/Lc变形类型变形机制稠木煤矿胜利煤矿CM130NCM130S39CM34SMCM130SSMSL150SSL3131SL100N35355.460.5111.126.9582.232.1581.421.080.1590.0230.355 82.576.136.2213.304.2377.081.3374.390.650.1050.0150.354 72.736.180.453.444.3191.961.6590.840.690.0910.0160.352 91.426.290.591.234.7693.502.2491.360.620.0810.0210.350 41.866.893.958.624.6683.351.6078.390.610.0930.0180.350 11.185.675.2612.385.2178.062.3979.150.600.0910.0260.345 91.737.201.811.395.7991.191.5892.430.470.0610.0150.352 02.85碎裂、粉片状煤碎裂、碎粉煤脆性变形稗冲煤矿石巷里煤矿BC21037.291.976.264.6587.511.5786.590.600.0830.0160.345 02.56BC11055.531.2710.264.2184.751.6286.280.540.0750.0160.335 92.67SXL10037.561.4242.866.8351.92—52.830.760.173—0.336 82.95SXL13057.893.0511.624.8581.19—82.310.560.081—0.336 62.92碎裂、鳞片、揉皱煤脆韧性变形

注:d002为芳香层单层之间的距离;La为芳香层片的直径;Lc为芳香层片平均堆砌厚度。

图3 寒婆坳向斜煤矿煤样SEM图
Fig.3 SEM images for typical coal samples in different coalmines in Hanpo’ao syncline

图4 不同煤层煤样的Ro,max and H/C 随距岩体远近的变化
图4 Ro,max and H/C change of different coal seam samples from the close to distance to Tianlongshan granite body

图5 寒婆坳向斜煤矿典型煤样XRD谱图
Fig.5 XRD spectra for typical coal samples in Hanpo’ao syncline

图6 XRD结构参数演化趋势及其随距岩体距离变化
Fig.6 XRD structural parameters and its variation tendency from the close to distance to Tianlongshan granite body

对寒坡坳向斜各煤矿煤层样中稀土元素含量进行了球粒陨石标准化计算,并作出稀土元素分配模式曲线图(图7),可以归纳为3种分配类型。

(1)A型(SXL130,BC110):为5号煤层煤样,且靠近岩浆岩体;分配曲线呈向右倾斜的二阶平台型,La-Ce,Pr-Eu线段斜率较大且较陡,Ce-Pr,Eu-Gd线段斜率相对前者较小且反向,Gd-Lu线段斜率较小且缓;Ce与Eu处呈小或中等V字形谷,负异常明显(图7 A型)。∑REE为(50.39~143.65)×10-6,∑L/∑H=1.69~2.26,δCe=0.52~0.75,δEu=0.64~0.66(表4)。

(2)B型(SLN100,CM130SSM,CM34SM):为5号煤层煤样;分配曲线呈向右倾斜,整体上较为平缓,La-Eu线段斜率较小,呈向上的弧形,Eu-Lu线段平缓略向上翘起;Ce峰明显,呈弱正异常,Eu处为小或中等V字形谷,负异常明显(图7 B型)。∑REE为(23.21~37.30)×10-6,∑L/∑H=0.51~0.94,δCe=1.19~1.89,δEu=0.62~1.12(表4)。

(3)C型(C1亚型:SXL100,SL3131;C2亚型:BC210,SL150S,CM130N34,CM130S39):均为3号煤层煤样;分配曲线较协调,向右倾斜,La-Sm线段斜率较大且陡,Gd-Lu线段斜率较小且缓;Ce峰或谷很不明显,基本无异常或微弱正异常,Eu处为小或中等V字形谷,负异常显著(图7 C1,C2)。∑REE为(28.60~200.82)×10-6,∑L/∑H=1.57~8.20,δCe=0.94~2.37,δEu=0.55~12.67(表4)。

从所有样品的稀土元素特征对比来看,虽然各煤矿煤中稀土元素含量存在差异,但大部分煤样稀土元素的分配曲线存在相似性,说明煤层沉积和演化过程相似,煤化作用过程中稀土元素含量基本不受影响。寒坡坳向斜煤矿煤中ΣREE,ΣLREE,ΣHREE具有较一致的变化趋势,靠近岩浆岩体的煤中REE含量增大(图8),① 湘中盆地各类岩样∑REE表现为:泥盆系灰岩及硅化灰岩<煤<基底前寒武纪板岩及蚀变板岩<白马山天龙山花岗岩(表5);② 靠近天龙山的石巷里煤矿SXL130、稗冲煤矿BC110煤样∑REE偏高,从分配模式图7 A型看,与泥盆纪灰岩及硅化灰岩相似;岩浆热液使围岩矿化,稀土元素发生迁移、富集,但局限于蚀变带。ΣL/ΣH值变化于0.51~8.20,均值为2.62,与马东升等[19]统计的湘中盆地煤中稀土元素ΣL/ΣH均值(6.91)相比,本文所采样品值偏低。FINKELMAN等[24]认为火成岩侵入改变无烟煤元素组成的方式主要通过热液流体迁移或富集、受热挥发及岩浆残留,显然本文稀土元素富集局限于蚀变带应与岩浆残留无关,受岩浆高热烘烤的煤中不同组分或矿物重新分布[25],结合成更稳定的状态;结合稀土元素分配类型,岩浆热及构造应力可能使煤中稀土元素分馏,岩浆热驱使煤中稀土元素向富轻稀土方向演化(图7 A型、C1型),构造应力驱使稀土元素向着富重稀土的方向演化(图7 B型、C2型)。

图7 新化寒坡坳向斜不同煤层煤样中稀土元素分配模式
Fig.7 Chondrite-normalized REE patterns of coal samples in Hanpo’ao syncline

表4 3种分配类型煤中稀土元素地球化学参数对比
Table 4 REE geochemical parameter of three distribution patterns

类型划分LREE/10-6HREE/10-6∑REE/10-6∑L/∑H(La/Yb)NδCeδEuδCe/δEud002/nmLa/LcA型65.6311.6477.275.406.200.640.650.980.336 22.80B型13.615.7419.352.341.281.230.631.930.351 82.04C1亚型98.597.40105.9910.5612.910.970.641.570.343 52.40C2亚型61.547.3568.897.848.041.070.591.870.350 42.07

图8 寒坡坳向斜煤样微量元素分布类型
Fig.8 REEs distribution patterns of different coal samples in Hanpoao syncline

表5 新化寒坡坳向斜煤样品稀土元素含量特征
Table 5 REE compositions of coal samples in Hanpo’ao syncline

位置编号煤层LaCePrNdSmEuGdTbDyHoErCM130S3935.0014.401.947.601.810.441.790.281.740.361.06稠木煤矿CM130N3410.0029.304.0115.203.040.553.030.442.400.471.26CM34SM51.806.560.924.001.260.301.670.302.050.461.28CM130SSM2.008.291.195.001.350.291.500.251.620.361.01SL313133.608.141.044.201.030.170.960.161.070.250.67胜利煤矿SL150S27.8063.907.4125.204.220.523.090.392.110.411.11SLN10050.803.380.522.300.690.170.930.191.360.290.80稗冲煤矿BC21034.0011.051.485.601.390.291.430.251.560.330.93BC11055.9011.602.229.502.030.421.870.281.770.371.07石巷里煤矿SXL100339.2581.9010.6039.206.691.3454.4050.5252.590.4551.24SXL130524.9030.307.4929.905.821.185.410.744.310.912.56区域地层泥盆系灰岩[20]11.536.761.206.741.440.200.810.171.040.220.62前寒武纪板岩[19]33.3263.418.1527.785.391.094.780.764.440.922.48蚀变岩石硅化灰岩[21]5.257.101.327.692.020.411.680.351.960.391.06蚀变板岩[20]33.8059.638.0128.165.851.234.970.845.021.013.07煤矿煤(14)[19]13.2528.353.1812.102.580.642.560.392.310.491.36白马山天龙山花岗岩(2)[22]43.0870.828.0325.856.281.046.200.753.80.791.90位置编号煤层TmYbLuY∑LREE∑HREE∑REE∑L/∑HLa/EuδCeδEuCM130S3930.150.900.1410.731.1917.1248.311.8211.361.080.75稠木煤矿CM130N340.181.040.1514.562.1023.4785.572.6518.181.080.55CM34SM50.170.940.1315.114.8422.1036.940.676.001.190.63CM130SSM0.140.780.1213.418.1219.1837.300.946.901.260.62SL313130.110.690.116.418.1810.4228.61.7421.181.895.02胜利煤矿SL150S0.161.010.1610.7129.0519.14148.196.7453.462.3712.67SLN10050.110.670.1010.97.8615.3523.210.514.711.891.12稗冲煤矿BC21030.130.820.129.623.8115.1738.981.5713.791.060.63BC11050.150.880.1312.231.6718.7250.391.6914.050.750.66石巷里煤矿SXL10030.1851.190.1911.05178.9921.83200.828.229.180.940.76SXL13050.362.140.3327.399.5944.06143.652.2621.10.520.64区域地层泥盆系灰岩[20]0.090.600.07—27.87 3.62 31.49 7.70 27.87 3.62 31.49 前寒武纪板岩[19]0.392.520.38—139.14 16.67 155.81 8.35 139.14 16.67 155.81 蚀变岩石硅化灰岩[21]0.160.990.12—23.79 6.71 30.50 3.55 23.79 6.71 30.50 蚀变板岩[20]0.403.160.49—136.68 18.96 155.64 7.21 136.68 18.96 155.64 煤矿煤(14)[19]0.191.220.18—60.10 8.70 68.80 6.91 60.10 8.70 68.80 白马山天龙山花岗岩(2)[22]0.392.460.3518.67155.10 16.64 171.74 9.32 155.10 16.64 171.74

注:球粒陨石标准化数据采用Boynton,1984标准值[23];∑LREE=La+Ce+Pr+Nd+Sm+Eu;∑HREE=Gd+Tb+Dy+Ho+Er+Tm+Yb+Lu;∑REE=∑LREE+∑HREE;LaN,CeN,SmN,EuN,GdN,PrN,YbN为球粒陨石标准化后的值,(La/Yb)N为球粒陨石标准化后值的比值,δCe=CeN/(SmN×GdN)1/2;δEu=EuN/(LaN×PrN)1/2

根据前文分析测试结果(表5),对煤中稀土元素进行了Q型聚类分析(统计量:相似性系数,最近距离聚类法,Pearson度量标准),得到相关谱系图(图9)。由图9可以看出参加聚类的煤矿煤样被分为三大类,即:① A型(SXL130,BC110);② B型(SLN100,CM130SSM,CM34SM);③ C型(C1亚型SXL100,SL3131;C2亚型BC210,SL150S,CM130N34,CM130S39),与稀土元素分配模式曲线有较大一致性,揭示岩浆热变质与构造-热变质作用在研究区有着较为临近的成因联系;岩浆侵位的构造效应(机械能、热能及化学能)造成煤岩结构破坏、变质程度升高以及元素富集、迁移,B型与C2型在区域变质作用的基础上叠加了构造-热变质作用,A型与C1型靠近岩体叠加了岩浆热变质作用,煤中REE与∑L/∑H较高(表4)。

图9 寒坡坳向斜煤样稀土元素Q型聚类分析谱系
Fig.9 Q-type cluster analysis dendrogram of Hanpoao syncline coal samples

4 结 论

(1)天龙山岩体侵位岩浆热及应力作用,不仅造成煤化程度增高,甚至形成隐晶质石墨。岩体附近向斜轴及地层线偏转,地层倾角倒转,远离岩体地层倾角较陡,向深部逐渐变缓,节理与岩组主压应力轴方位与岩体边界近于垂直;煤变形类型多为碎裂煤、碎粒煤及鳞片状煤等,属脆性-脆韧性变形机制,浅层低温高压构造环境。岩体附近变形煤的Ro,max高达7.89%,Vdaf变化于4.21%~6.95%;构造应力与岩浆热变质叠加作用对煤的大分子结构影响显著,d002值、La/Lc分别随变质程度降低及远离岩体而减小。

(2)煤中稀土元素∑REE均值76.54×10-6,靠近岩体的煤层受岩浆热作用显著,煤中REE含量显著增加,石巷里煤矿3煤、5煤稀土元素∑REE平均含量为200.82×10-6,143.65×10-6;根据稀土元素球粒陨石标准化分配模式曲线特征,划分为3种类型,且B,C2亚型受构造-热变质作用较强,A型、C1亚型在前者基础上叠加了岩浆热变质作用,d002显著减小,La/Lc增大;岩浆热变质作用驱使稀土元素向富轻稀土方向演化,构造应力驱使稀土元素向着富重稀土的方向演化,导致ΣL/ΣH比值偏低。

参考文献:

[1] 李焕同,曹代勇,王林杰,等.雪峰山东缘湘中地区控煤构造特征及演化[J].大地构造与成矿学,2013,37(4):611-621.

LI Huantong,CAO Daiyong,WANG Linjie,et al.Characteristics and evolution of coal-controlled structures on the east slope of the Xuefengshan domain in central Hunan Province[J].Geotectonica et Metallogenia,2013,37(4):611-621.

[2] 李云波,姜波,屈争辉.构造煤中敏感元素迁移、聚集规律及地质控制因素——以淮北海孜矿为例[J].中国科学:地球科学,2014,44(11):2419-2430.

LI Yunbo,JIANG Bo,QU Zhenghui.Controls on migration and aggregation for tectonically sensitive elements in tectonically deformed coal:An example from the Haizi mine,Huaibei coalfield,China[J].Science China:Earth Sciences,2014,44(11):2419-2430.

[3] 曹代勇,李小明,张守仁,等.构造应力对煤化作用的影响——应力降解机制与应力缩聚机制[J].中国科学(D辑:地球科学),2006,36(1):59-68.

CAO Daiyong,LI Xiaoming,ZHANG Shouren,et al.Research on the effect between tectonic stress and coalification-stress degradation mechanism and polycondensation mechanism[J].Science in China Series D:Earth Sciences,2006,36(1):59-68.

[4] 曹代勇,李小明,邓觉梅.煤化作用与构造-热事件的耦合效应研究——盆地动力学过程的地质记录[J].地学前缘,2009,16(4):52-60.

CAO Daiyong,LI Xiaoming,DENG Juemei.Coupling effect between coalification and tectonic-thermal events-geological records of geodynamics of sedimentary basin[J].Earth Science Frontiers,2009,16(4):52-60.

[5] DAI Shifeng,REN Deyi,CHOU Chenlin,et al.Geochemistry of trace elements in Chinese coals:A review of abundances,genetic types,impacts on human health,and industrial utilization[J].International Journal of Coal Geology,2012,94:3-21.

[6] 黄文辉,杨起,汤达祯,等.华北晚古生代煤的稀土元素地球化学特征[J].地质学报,1999,73(4):360-369.

HUANG Wenhui,YANG Qi,TANG Dazhen,et al.Geochemistry of rare earth elements in Late Paleozoic coals in the North China[J].Acta Geologica Sinica,1999,73(4):360-369.

[7] 唐修义,黄文辉.中国煤中微量元素[M].北京:商务印书馆,2004:293-310.

[8] FINKELMAN R B,Trace and minor elements in coal[A].ENGEL M N,MACKO S.ORGANIC Geochemistry[C].New York:Plenum Press,1993:593-607.

[9] 刘东娜,周安朝,常泽光.大同煤田8 号原煤及风化煤中常量元素和稀土元素地球化学特征[J].煤炭学报,2015,40(2):422-430.

LIU Dongna,ZHOU Anchao,CHANG Zeguang.Geochemistry characteristics of major and rare earth elements in No.8 raw and weathered coal from Taiyuan Formation of Datong coalfield[J].Journal of China Coal Society,2015,40(2):422-430.

[10] 邹建华,刘东,田和明,等.内蒙古阿刀亥矿晚古生代煤的微量元素和稀土元素地球化学特征[J].煤炭学报,2013,38(6):1012-1018.

ZOU Jianhua,LIU Dong,TIAN Heming,et al.Geochemistry of trace and rare earth elements in the Late Paleozoic coal from Adaohai Mine,Inner Mongolia[J].Journal of China Coal Society,2013,38(6):1012-1018.

[11] 屈争辉.构造煤结构及其对瓦斯特性的控制机理研究[D].徐州:中国矿业大学,2010:57-59.

QU zhenghui.Study of tectonized coal texture and its controlling mechanism upon gas properties[D].Xuzhou:China university of mining and technology,2010:57-59.

[12] 侯泉林,李会军,范俊佳,等.构造煤结构与煤层气赋存研究进展[J].中国科学:地球科学,2012,42(10):1487-1495.

HOU Quanlin,LI Huijun,FAN Junjia,et al.Structure and coalbed methane occurrence in tectonically deformed coals[J].Sci China Earth Sci,2012,42(10):1487-1495.

[13] 周旭林,何艳林,刘和生.湖南涟邵煤田北段寒婆坳矿区煤及石墨矿地质特征[J].煤田地质与勘探,2017,45(1):9-13.

ZHOU Xulin,HE Yanlin,LIU Hesheng.Geological characteristics of coal and graphite in Hanpoao mining area in northern section of Lianshao coalfield of Hunan Province[J].Coal Geology & Exploration,2017,45(1):9-13.

[14] 曹代勇,张鹤,董业绩,等.煤系石墨矿产地质研究现状与重点方向[J].地学前缘,2017,24(5):317-327.

CAO Daiyong,ZHANG He,DONG Yeji,et al.Research status and key orientation of coal-based graphite mineral geology[J].Earth Science Frontiers,2017,24(5):317-327.

[15] 李焕同,莫佳峰,武玉良,等.湖南新化地区煤变形变质与构造环境特征[J].煤田地质与勘探,2017,45(4):7-12,18.

LI Huantong,MO Jiafeng,WU Yuliang,et al.Coal deformation,metamorphism and tectonic environment in Xinhua,Hunan[J].Coal Geology & Exploration,2017,45(4):7-12,18.

[16] 周鲁民,黄铁心.湘中南花岗岩类地质时代分析[J].华东地质学院学报,1987,3(1):43-51.

ZHOU Lumin,HUANG Tiexin.Analysis of the geological period of granifes in the middle south of Hunan[J].Journal of East China College of Geology,1987,3(1):43-51.

[17] 李焕同,李搛倬,李阳,等.湘中地区煤系变形及煤变质作用特征分析[J].西安科技大学学报,2017,37(6):886-891.

LI Huantong,LI Jianzhuo,LI Yang,et al.Coal seam deformation and metamorphism characteristics in central Hunan[J].Journal of Xi’an University of Science and Technology,2017,37(6):886-891.

[18] 潘伟尔,杨起,潘治贵.湘赣中南部地区煤的岩浆热变质作用[J].现代地质,1993(3):326-336,384-385.

PAN Weier,YANG Qi,PAN Zhigui.Magmatic thermametamorphism of coal in central-south Hunan and Jiangxi Province[J].Geoscience,1993(3):326-336,384-385.

[19] 马东升,潘家永,解庆林,等.湘中锑(金)矿床成矿物质来源——Ⅰ.微量元素及其实验地球化学证据[J].矿床地质,2002,21(4):366-376.

MA Dongsheng,PAN Jiayong,XIE Qinglin,et al.Ore source of Sb(Au) deposits in central Hunan:I.Evidences of trace elements and experimental geochemistry[J].Mineral Deposits,2002,21(4):366-376.

[20] 陶琰,金景福,唐建武,等.湘中锡矿山式锑矿稀土元素地球化学研究[J].成都理工学院学报,1999,26(3):96-100.

TAO Yan,JIN Jingfu,TANG Jianwu,et al.The REE geochemical characteristics of Xikuangshan-type antimony deposits in central Hunan Province[J].Journal of Chengdu University of Technology,1999,26(3):96-100.

[21] 梁华英.龙山金锑矿床成矿物质来源研究[J].矿床地质,1989,8(4):39-48.

LIANG Huaying.Ore material sources of the Longshan gold-antimony deposit[J].Mineral Deposits,1989,8(4):39-48.

[22] 王先辉,何江南,杨俊,等.中华人民共和国区域地质调查报告邵阳市幅[R].长沙:湖南省地质调查院,2014:171-174.

[23] BOYNTON W V.Cosmochemistry of the rare earth elements:Meteorites studies[M].Amsterdam:Development in Geochemistry,1984:63-114.

[24] FINKELMAN R B,BOSTICK N H,DULONG F T,et al.Influence of an ignous intrusion on the inorganic geochemistry of a bituminous coal from Pitkin County,Colorado[J].International Journal of Coal Geology,1998,36(3-4):223-241.

[25] VALENTIM B,GUEDES A,RODRIGUES S,et al.Case study of igneous intrusion effects on coal nitrogen functionalities[J].International Journal of Coal Geology,2011,86(2):291-294.

Effect of intrusion of the Tianlongshan Granite Body on coal seam deform- ation and metamorphism characteristics in Xinhua Area,Hunan Province

LI Huantong1,CHEN Fei1,ZOU Xiaoyan2,ZUO Xiaofeng1,MO Jiafeng3,HAN Xue1,CHEN Xi1

(1.School of Geology and EnvironmentXian University of Science and Technology,Xian 710054,China; 2.College of Geosciences and Surveying Engineering,China University of Mining and Technology(Beijing),Beijing 100083,China; 3.Academy of Coal Geological Survey of Hunan Province,Changsha 410014,China)

Abstract:Coal is sensitive to stress,strain and temperature.Under the multi-stage and multi-layer tectonic-thermal movement,there will inevitably be various traces of stress (static pressure and structural stress).This paper discusses the effect of intrusion of the Tianlongshan granite body on coal seam deformation and metamorphism,molecular structure,trace elements migration and aggregation in detail by proximate and ultimate analysis,XRD,SEM,ICP-MS methods.The results show that the coal turned itself into aphanitic graphite with the increase of coalification degree under the local stress field which was caused by Tianlongshan granite body intrusion and magmatic hydrothermalism,and the large quantities of thermal metamorphic minerals appeared in the coals and surround rock.Radial compressive stress concentration zone was applied to the rock mass emplacement,σ1 orientation of joint and petrofabric was perpendicular to the granite body boundary,under the ductile-brittle deformation with low temperature,low stress,and high strain rate.The superposition of tectonic stress and magmatic thermal metamorphism had a significant effect on the macromolecular structure of the coals,and the value of d002 and La/Lc reduction with the decrease of metamorphism degree and away from the magmatic intrusion,respectively.The coal seam near the granite body was obviously affected by magmatic heat.Structural effects of magmatic intrusion (mechanical energy,thermal energy and chemical energy) caused structural damage to coal petrography,the increase of metamorphism degree,and element enrichment and migration,REE content obviously increased,chondrite-normalized REE patterns could be divided into three types,Type A and C1 superimposed magmatic thermal metamorphism near the rock mass,similar to the distribution pattern curve of rare earth elements in Devonian limestone and silicified limestone.Magmatic hydrothermal fluid mineralized the surrounding rock,but was limited to the alteration zone.The magmatic thermal metamorphism led to an enrichment of LREE,while structural stress led to an enrichment of HREE,the concentration of local stress in the east side of Tianlongshan granite body caused the lower value of ΣL/ΣH.

Key words:Tianlongshan granite body;coal deformation and metamorphism;XRD;trace elements;structural effect

移动阅读

李焕同,陈飞,邹晓艳,等.湖南新化天龙山岩体侵位对煤系变形变质的构造效应[J].煤炭学报,2019,44(7):2206-2215.doi:10.13225/j.cnki.jccs.2018.0974

LI Huantong,CHEN Fei,ZOU Xiaoyan,et al.Effect of intrusion of the Tianlongshan Granite Body on coal seam deformation and metamorphism characteristics in Xinhua Area,Hunan Province[J].Journal of China Coal Society,2019,44(7):2206-2215.doi:10.13225/j.cnki.jccs.2018.0974

中图分类号:P55

文献标志码:A

文章编号:0253-9993(2019)07-2206-10

收稿日期:2018-07-24

修回日期:2018-11-22

责任编辑:韩晋平

基金项目:国家自然科学基金资助项目(41502160);中国博士后科学基金资助项目(2016M592907XB)

作者简介:李焕同(1986—),男,山东单县人,讲师,硕士生导师,博士后。E-mail:htlcumt@126.com