中国页岩气勘探开发处于快速发展阶段,2018年在四川盆地及周缘五峰组—龙马溪组页岩气产量达到114 亿m3[1],并形成了3 500 m以浅页岩气有效开发的自主技术[2]。南方海相及海陆过渡相发育多套含气页岩,在下寒武统筇竹寺组(鄂宜页1井,6.02万m3/d)、中泥盆统应堂组—罗富组(广西柳州2万m3/d)及下石炭统打屋坝组(水页1井,1万m3/d)业已获得工业气流[3-5],但并未能实现规模建产。南方地区石炭系海陆过渡相页岩气的突破,是实现中国页岩气规模化发展的一个重要环节[3]。
自2012年,贵州对全省的页岩气资源开展了系统的调查评价,针对下石炭统旧司组部署实施了5口页岩气调查井[5-7],并对下石炭统旧司组页岩的沉积环境、有机地球化学、储层特征、成藏条件及选区评价等方面开展了研究,取得大量的共识[5-15]:认为黔西南地区旧司组黑色页岩呈北西—南东向稳定展布,沉积中心在威宁六硐桥一带(厚185 m),其往西南和北东方向厚度变薄至缺失[13-14]。威宁及周缘地区,旧司组页岩有机质类型以Ⅱ型为主,有机碳含量为0.45%~2.37%,热演化程度在2.5%左右,脆性矿物含量约60%,含气量可达1.5~3.0 m3/t,其资源量为0.57×1012 m3[5-15],具备较大的勘探潜力。但在昭通示范区及周缘旧司组页岩沉积环境方面仍存在一定的争议[5,8,11,14]。
浙江油田公司2018年的页岩气产量超10亿m3,为寻找新的接替层系,实现高质量可持续发展,在昭通示范区西南部的威宁县龙街镇,针对下石炭统旧司组部署实施了资料井A,钻获了页岩气流,坚定了石炭系页岩气勘探的信心。笔者基于A井旧司组岩芯样品的主量、微量及稀土元素特征、有机地球化学特征、古生物及岩石薄片等资料,探讨了昭通示范区旧司组页岩的沉积环境,为示范区石炭系页岩气选区评价提供依据。
续 表
样品号井深/m稀土元素含量/(μg·g-1)LuY∑REE∑LREE∑HREELREE/HREE(La/Yb)N(La/Sm)N(Gd/Yb)NδEuδCeYS-T31220.200.3419.83149.25113.4335.833.170.051.200.020.250.21YS-T61238.350.2913.51135.78110.8924.884.460.041.450.010.250.18YS-T91261.400.105.8343.0133.339.673.450.031.140.020.260.24YS-T131299.180.3616.83191.22159.5531.675.040.031.460.010.250.18YS-T141306.670.2114.2096.3272.6223.703.060.041.150.020.260.19YS-T171343.850.1910.2992.3874.0518.334.040.041.230.020.260.20YS-T191354.600.189.9283.2566.1217.133.860.041.190.020.270.20YS-T221370.500.3117.73168.73137.5831.154.420.031.300.010.260.21YS-T241377.250.5024.32212.26169.9942.274.020.031.060.020.260.19YS-T301392.060.5524.23227.93184.9243.014.300.031.050.020.260.18YS-T331402.500.4221.19216.45178.0238.434.630.031.270.010.290.19YS-T361412.300.2411.05104.7885.0819.704.320.031.370.020.250.28YS-T381419.670.5323.94240.79198.1142.684.640.031.080.010.260.18YS-T411430.400.2410.11129.02111.3517.676.300.021.170.010.260.23平均值0.3215.93149.37121.0728.294.260.031.220.020.260.20北美页岩组合样0.4830.00200.21
昭通页岩气示范区地处云贵川3省交界处,大地构造位置主体处于四川盆地南缘的滇黔北坳陷[16],其横跨5个次级构造带(图1)。早泥盆世,随着滇黔桂盆地裂谷系向西北伸展拉张,威宁及周缘地区沉积一套滨岸-泻湖-陆棚相的碎屑岩[17],此时在加里东基底上发育的北西向水城—紫云裂陷槽已具雏形[17],其控制了威宁及周缘地区泥盆系-石炭系相区展布[18]。早石炭世岩关阶开始,由南东向北西海侵,至大塘阶海侵范围达到最大[5,11],沿古陆边缘沿岸发育河流三角洲相,向台地内发育潮坪相沉积,在台地内发育多个泻湖相和台盆相沉积[11]。威宁及周缘地区堆积了一套旧司组灰黑色、黑色泥灰岩、泥岩及页岩,局部夹砂岩、结核状泥灰岩透镜体、煤线及薄层状硅质页岩。A井位于威宁县龙街镇,于1 207.7 m钻至旧司组中部,由于工程原因提前完钻(完钻井深1 465.8 m),旧司组未钻穿。A井钻揭了旧司组暗色页岩20层,累计厚68.98 m,单层最大厚度为32.79 m。现场实测证实其旧二段页岩具有一定含气量,点火可着。
为开展昭通示范区旧司组泥页岩古沉积环境研究,对A井旧司组岩芯系统采样51件(井位如图1所示),完成总有机碳分析,并选取14件样品,进行主微量元素及稀土元素测试。主量及微量稀土元素分析由中国石油勘探开发研究院非常规油气重点实验室完成。分析方法及流程依据GB/T14506.28—2010,DZG20-1 16.20,GB/T14506.14—2010及GB/T 14506.30—2010,分析仪器为AxiosmaxX射线荧光光谱仪和X Serise2电感耦合等离子体质谱仪。检测温度为20~27 ℃,湿度30%~37%。
图1 昭通页岩气示范区构造区划
Fig.1 Structure of the Zhaotong shale gas demonstrtion area
2.2.1 有机碳含量
A井旧司组上段黑色页岩、钙质泥岩及泥岩有机碳含量分析结果如表1及图2所示。有机碳含量为0.55%~1.61%,平均为1.06%。就样品而言,旧二段2亚段有机碳含量为0.55%~1.61%,平均值为0.96%;旧二段1亚段有机碳含量为0.69%~1.56%,平均值为1.13%。整体上,有机碳含量与深度相关性不强,暗示其古沉积环境变化频繁。
图2 A井旧司组主量元素变化特征柱状图
Fig.2 Variation characteristics of the major element and TOC in the Jiusi Formation of the A well
表1 A井旧司组主量元素及有机碳分析结果
Table 1 Analytical results of the major element and TOC in the Jiusi Formation of the A well
样品号井深/mTOC含量/%主量元素含量/%SiO2Al2O3TiO2Fe2O3FeOCaOMgOK2ONa2OMnOP2O5YS-T31220.200.6928.069.670.382.620.8528.582.201.390.420.0210.027YS-T61238.351.4631.5112.850.386.000.8821.931.691.190.620.0430.030YS-T91261.401.2715.426.370.143.030.4847.881.971.040.650.0240.057YS-T131299.181.5640.7313.950.595.701.1012.053.381.970.740.0310.083YS-T141306.670.9321.966.190.242.140.7232.504.720.700.410.0380.042YS-T171343.851.0830.889.390.322.171.2225.832.661.370.630.0530.079YS-T191354.601.0823.426.770.281.530.7533.492.611.031.080.0530.069YS-T221370.501.2442.3811.830.502.792.6812.964.622.110.990.0710.036YS-T241377.250.6455.1014.030.712.732.454.954.322.720.850.0710.039YS-T301392.060.9059.6514.060.833.172.323.213.412.730.830.0640.047YS-T331402.500.7850.8717.690.773.932.555.533.033.190.950.0510.078YS-T361412.301.6129.8910.810.382.421.3525.552.461.620.890.0910.021YS-T381419.670.5558.5419.630.901.953.450.454.052.990.710.0180.045YS-T411430.401.0251.3015.680.623.711.554.286.943.280.740.0390.025
2.2.2 主量元素含量
A井旧司组泥页岩主量元素含量分析结果如表1及图2所示,其主要为SiO2,Al2O3和CaO。其中,SiO2含量为15.42%~59.65%,平均为35.29%;Al2O3含量为6.37%~14.06%,平均为12.06%;CaO含量0.45%~47.88%,平均为18.51%。此外,还含有少量的Fe2O3,TiO2和P2O5等主量元素(表1)。整体上,A井旧司组页岩发育段(即旧二2亚段)SiO2和Al2O3含量相对较高,分别为29.89%~59.65%和10.81%~19.63%,平均值为49.67%和14.82%;CaO含量相对较低,为0.45%~25.55%,平均为8.13%。
与川南五峰组—龙马溪组富有机质页岩相比[19],旧司组页岩SiO2含量略低,CaO含量大致相当,而Al2O3含量较高,即黏土含量较高。旧司组泥页岩主量元素变化规律性不强,与有机碳含量相关性亦关系不大。而川南五峰组—龙马溪组富有机质页岩Al2O3和TiO2含量在剖面底部低,向上逐渐增大,指示向上其陆源碎屑物质输入增加。富有机质页岩的SiO2和CaO含量,明显高于贫有机质页岩的含量,且与TOC含量成正相关。同时,富有机质页岩Al2O3,TiO2和Fe2O3含量较低[20]。造成此差异的原因,可能是A井旧司组处于海陆交互相,水体深度相对龙马溪组变浅,深度变化相对频繁,有较多的陆源碎屑输入且供给量变化较大,导致A井旧司组主量元素纵向变化规律性不明显。
2.2.3 微量元素含量
本次测试微量元素与上地壳元素丰度相比[21]:Sr,Ni,V,Zn,Cr,Mo,Sc及Co等浓集系数在1.0~2.3,弱富集(表2);Zr与Rb浓集系数为0.9左右,代表弱亏损。而Ba严重亏损(表2),可能与旧司组碳酸盐含量较高有关。旧二2亚段页岩发育层段的微量元素相对富集(表2),其中氧化还原敏感元素U/Th,Ni/Co,V/Cr及V/Ni+V等,与有机碳含量演化趋势基本无相关性(图3),代表其古环境变化频繁。
表2 A井旧司组微量元素及有机碳分析结果
Table 2 Analytical results of the trace element and TOC in the Jiusi Formation of the A well
样品号井深/m微量元素含量/(μg·g-1)SrBaNiCoVCrThUZnScRbZrMoYS-T31220.20571.8881.3240.0211.6361.8059.0210.691.7520.9511.3676.76108.250.53YS-T61238.35526.2770.1254.1713.5460.6778.0212.961.8822.7715.2869.72125.152.00YS-T91261.40801.0331.0430.036.1432.9044.883.932.4015.646.3047.4474.832.06YS-T131299.18243.66112.2539.5517.18122.2979.9114.963.2964.2520.05102.35158.471.57YS-T141306.67753.3736.6726.176.7241.8241.175.681.4416.987.3535.8992.460.66YS-T171343.85666.5764.2825.648.4544.3446.176.781.6437.7610.2455.8979.640.46YS-T191354.60702.0356.6819.866.4941.3340.716.151.4829.388.5041.1781.120.68YS-T221370.50420.90152.0931.6211.96128.0886.8012.682.8661.3014.96103.22134.711.40YS-T241377.25346.66159.7434.0116.56154.0594.0818.293.4686.4818.27129.52337.540.46YS-T301392.06284.19179.6730.4017.49138.6288.2019.123.7397.3115.34122.19263.040.45YS-T331402.50410.79208.0443.6218.76178.01107.8319.963.69100.2119.31144.35158.501.31YS-T361412.30762.42169.0643.109.62102.5491.729.013.48107.8511.0379.48108.364.38YS-T381419.67290.61254.8954.7319.56194.55121.2721.353.74107.5516.14137.36196.140.36YS-T411430.40279.89179.6843.4315.89152.69104.7215.293.08129.8715.47148.76129.002.56平均值504.31125.4036.8812.86103.8477.4712.632.7164.1613.5492.43146.231.35上地壳丰度300.00640.0021.0012.0070.0044.009.501.8063.0010.0095.00170.000.60浓集系数1.680.201.761.071.481.761.331.511.021.350.970.862.25样品号井深/mU/ThNi/CoV/CrV/Ni+VSr/BaTOC含量/%YS-T31220.200.163.441.050.397.030.69YS-T61238.350.154.000.780.477.501.46YS-T91261.400.614.890.730.4825.801.27YS-T131299.180.222.301.530.242.171.56YS-T141306.670.253.901.020.3820.540.93YS-T171343.850.243.040.960.3710.371.08YS-T191354.600.243.061.020.3212.391.08YS-T221370.500.232.641.480.202.771.24YS-T241377.250.192.051.640.182.170.64YS-T301392.060.201.741.570.181.580.90YS-T331402.500.182.321.650.201.970.78YS-T361412.300.394.481.120.304.511.61YS-T381419.670.182.801.600.221.140.55YS-T411430.400.202.731.460.221.561.02平均值0.253.101.260.307.251.06上地壳丰度浓集系数
2.2.4 稀土元素含量
A井旧司组页岩稀土总量(∑REE)为43.00×10-6~240.79×10-6,平均为149.37×10-6(表3),远低于北美页岩稀土含量200.21×10-6[19]。稀土总量由下至上变化特征不明显,但与TOC呈负相关性(图3),反映有机质的增加会降低全岩中∑REE 的总量。
LREE/HREE比值能反映REE的分异程度,A井旧司组页岩的LREE/HREE比值为3.06~6.30,平均为4.26(表3),远低于北美页岩的比值7.50[22],证实旧司组轻稀土富集。经北美页岩标准化计算A井页岩样品:δEu值为0.782~1.216,平均值为0.90,略高于北美页岩标准值(δEu=0.70),整体表现为负异常;δCe值为0.864~1.085,平均值为0.98,低于北美页岩标准值(δCe=1.11),同样整体表现为负异常(表3,图3)。(La/Yb)N值为1.129~1.623,明显低于北美页岩组合样(La/Yb)N=5.13;(La/Sm)N值为0.18~2.21,体现轻稀土段富集;(Gd/Yb)N值为0.77~1.32,重稀土段相对平缓(表3)。旧司组页岩经北美页岩标准化后,曲线呈平坦状,表现为轻稀土富集,重稀土相对亏损(图4)。
图3 A井旧司组微量元素及稀土元素变化特征
Fig.3 Variation characteristics of trace elements and REE of Jiusi Formation in A well
表3 A井旧司组稀土元素分析结果
Table 3 Analyses of REE of the Jiusi Formation of the A well
样品号井深/m稀土元素含量/(μg·g-1)LaCePrNdSmEuGdTbDyHoErTmYbYS-T31220.2024.9850.466.4724.975.491.054.750.794.570.802.190.402.14YS-T61238.3522.4551.596.6625.184.320.693.300.532.970.551.630.321.78YS-T91261.408.0316.051.706.161.140.261.040.171.000.200.590.110.63YS-T131299.1834.2676.889.0533.005.480.894.520.683.760.712.110.402.30YS-T141306.6716.6533.324.0315.013.060.552.710.452.670.501.350.241.36YS-T171343.8518.0134.593.9014.352.680.512.340.372.170.401.150.211.19YS-T191354.6015.2331.723.5112.882.330.452.050.341.960.381.030.191.08YS-T221370.5032.1766.217.4226.264.600.913.950.633.540.661.900.362.06YS-T241377.2537.4386.898.7930.805.190.884.290.744.890.982.800.553.21YS-T301392.0640.2895.479.5933.475.240.874.410.764.981.033.020.603.42YS-T331402.5040.0688.679.4133.145.741.014.810.774.520.982.510.452.77YS-T361412.3018.0542.474.3116.602.920.742.430.422.130.421.280.261.47YS-T381419.6742.42104.1610.3035.085.260.904.640.784.880.972.930.593.42YS-T411430.4025.2759.645.7318.202.040.472.020.291.740.371.180.241.48平均值26.8159.876.4923.223.960.733.380.553.270.641.830.352.02北美页岩组合样32.0073.007.9033.005.701.245.200.855.801.043.400.503.10
图4 A井旧司组页岩稀土元素北美页岩标准化
Fig.4 NASC normalized REE patterns of shale in the Jiusi Formation of the A well
A井旧司组二段页岩以含碳-低碳钙质页岩、含碳黏土质页岩、含碳硅质页岩、低碳钙及粉砂质页岩为主(图2,5)。A井旧二段泥页岩27个样品进行X衍射全岩分析:黏土矿物平均含量最高,为21.4%~73.4%,平均含量约为37.6%;在脆性矿物中,石英、方解石、白云石、长石及铁矿物平均含量分别为23.8%,22.0%,7.3%,2.5%和6.8%。整体上,旧司组黏土矿物和钙质含量,要高于五峰组—龙马溪组[16]。石英(陆源石英)含量低于五峰组—龙马溪组石英(生物成因),证实旧司组沉积水体相对五峰组—龙马溪组页岩沉积期水体较浅。
A井旧司组泥灰岩及灰质泥岩的遗迹化石主要为Chondrites遗迹组合[23],其潜穴系统多为水平或倾斜的树枝状,分支2~4级不等,分支角度30°~50°,分支直径0.5~3.0 mm,断面为呈圆形斑点(图5(a),(d))。贫氧~富氧环境中的Chondrites遗迹以直径通常大于0.2 cm,低~中等分异度,交切关系简单,寄主层颜色较浅,有机碳含量较低为特征,岩性为灰黑色泥页岩及泥灰岩,可能代表了较相对宁静的泻湖环境[23]。
图5 A井旧司组薄片及岩芯照片
Fig.5 Microphotograp and Core image of the Jiusi Formation of the A well
3.2.1 微量元素特征
微量元素记录了沉积期环境相关的氧化还原性质,常见的微量元素比值,即U/Th,Ni/Co,V/Cr及V/(V+Ni)等指标广泛用于古氧化还原条件判识[19,24](表4)。
表4 古氧化还原环境的元素判别参数[19]
Table 4 Element discrimination paramenters in redoxcondition[19]
判别参数缺氧环境厌氧贫氧富氧环境U/Th>1.250.75~1.25<0.75Ni/Co>7.005.00~7.00<5.00V/Cr>4.252.00~4.25<2.00V/(V+Ni)1~0.830.57~0.83<0.57
A井旧二段U/Th值为0.145~0.611、Ni/Co为值1.74~4.89、V/Cr值为0.73~1.65、V/(V+Ni)值为0.18~0.48(表2~4),均暗示A井区旧二段泥页岩沉积期为富氧环境。表明旧二段古环境不利于有机质的保存,可能也是其有机碳含量低的原因之一(图3)。Sr/Ba比值能反映古盐度,远离海岸其值逐渐变大。旧二段Sr/Ba比值为1.14~20.80,平均7.25,整体值不高,但变化幅度大(表2),说明其可能有淡水注入,处于海陆过渡相。
3.2.2 稀土元素特征
REE总量具有随海水深度增大而升高的特点,其REE量大小能够反映古海洋海水的深度及相对变化[25]。A井旧二段REE值整体相对亏损(表3),暗示水体相对较浅。其中,旧二2亚段REE量相对较大(图3),说明A井旧二2亚段大套页岩发育段的水体相对其他亚段沉积期较深。
A井样品北美页岩标准化稀土元素配分模式曲线显示:轻稀土元素具有略显右倾,而重稀土段趋于平坦(图4),整体表现为具有轻稀土元素富集、重稀土元素亏损及Eu,Ce轻微负异常特征。五变价元素Ce和Eu对氧化还原状况最为敏感[26],δCe值为0.78作为划分氧化还原环境的参考值[25]。A井旧司组样品的δCe值介于0.864~1.085(表3,图3),均大于0.78,表现为还原环境。而δEu值为0.864~1.085,δEu值在1附近上下振动(表3,图3),指示旧司组黑色页岩沉积环境也在弱氧化和还原环境间震荡变化。
3.2.3 黄铁矿特征
草莓状黄铁矿晶体粒径分布特征可判断古水体的氧化还原条件[27]。静海即缺氧环境形成的黄铁矿粒径一般小于6 μm,以草莓状为主,且粒径变化不大。氧化环境形成的黄铁矿以晶体状为主,偶见草莓状黄铁矿,粒径一般大于20 μm[28]。而A井旧司组发育较多的草莓状黄铁矿,其粒径略大,但其变化范围大(5~12 μm)(图6(a),(c)),平均粒径大约为7.5 μm,且晶体状黄铁矿普见(图6(a),(b))。故旧司组黄铁矿可能形成于次氧化~原环境[28]。
图6 A井旧司组黄铁矿显微照片
Fig.6 Microphotograp of pyrite in the Jiusi Formation of the A well
烃源岩生物标志化合物特征可反应生油母质沉积期的古环境[29]。A井旧司组页岩抽提物的正烷烃分布以双峰型为主(图7),一般后峰(>nC20)高于前锋(<nC20)。此特征与高成熟阶段正烷烃分布向低碳数演化趋势相反,与成熟度无关,代表了两种生源母质的进入。其正烷烃前、后峰群分别代表水生生物(菌、藻类)与高等植物的输入。
图7 A井旧司组页岩抽提物饱和烃色谱
Fig.7 Saturated hydrocarbon chromatogram of Jiusi Formation in the A well
A井旧司组页岩的甾、萜生标物质谱图表明(图8):m/z=191萜烷中出现含量较高的咸水还原环境的标志物伽马腊烷[30];C30重排霍烷,则象征其具有陆源母质输入[31]。m/z=217甾烷中检出孕甾烷、深孕甾烷,指示页岩为超盐沉积环境[31];其C27甾烷含量>C29甾烷含量>C28甾烷含量,三环帖以C20为主峰,体现了以水生生物输入为主、陆源高等植物输入为辅的海陆过渡相环境。邻井C井旧司组黑色页岩样品显微组分以壳质组为主,有机质类型为Ⅱ2型或Ⅲ型[6],表明其母质来源主要为海陆过渡相环境的高等生物。从A井旧司组页岩的色谱质谱特征总体看,其处于海陆过渡的古环境。
图8 A井旧司组页岩甾烷、萜烷质谱图
Fig.8 Terpane and sterane mass chromatogram of shale form the Jiusi Formation of A well
如前所述,微量元素和稀土元素元素地球化学参数所判识的氧化还原条件有所差异。故仅用一个指标判别古氧化还原条件并不可靠,应尽可能结合多个指标进行综合判识[29]。综合利用A井旧司组岩芯样品的岩石学、微量元素、稀土元素及有机地球化学等资料,综合判断A井旧二段为海陆过渡相沉积,其页岩主要发育于弱还原的古环境。
有机碳含量是控制页岩气含气量的关键因素之一。而有机质富集主要受控于古生产力、保存条件和沉积速率等[26,32] 。因而,有机碳含量高低与古生产力指示元素的质量分数关系密切。沉积期古生产力高低直接影响有机质的来源和丰度[33],某种程度上决定了页岩的含气量。
Ni,Zn及Cu等营养元素,作为古生产力的替代指标,其质量分数能有效反映古生产力的高低[32]。A井旧二段Ni,Zn及Cu微量元素含量随深度变化趋势,与TOC含量的变化趋势基本一致(图3)。其Ni含量为19.9~54.7 μg/g,平均值为36.9 μg/g;Zn含量为15.6~130 μg/g,平均值为64.2 μg/g;Cu含量为6.51~17.5 μg/g,平均值为10.58 μg/g(表2,图3)。A井旧二段页岩的Ni,Zn及Cu营养元素含量,均小于昭通示范区五峰组—龙一段的相应值[32]。
Ba为最为广泛的古海洋生产力指标之一,但只有形成于正常富氧环境页岩中的过剩钡Baxs(生物来源Ba,即不含陆源碎屑Ba)才能真正揭示沉积期的古生产力。一般Baxs含量在1 000~5 000 μg/g,指示沉积环境中具有高的生产力[19]。A井旧二段Ba含量(含陆源碎屑Ba)为31~255 μg/g,平均值为125.4 μg/g(图3),远小于龙马溪组中上部富氧环境沉积页岩的Baxs含量(长宁剖面,平均值为1 033.2 μg/g)[19]。说明昭通示范区旧司期古生产力远不及五峰组—龙一段沉积期。同时,其贫氧~富氧的古环境也不利于有机质保存,导致A井旧二段页岩的有机碳含量低于五峰组—龙一段页岩。
页岩总含气量与有机碳含量成正相关性。A井8个旧二段样品TOC含量为0.66%~1.27%,其实测总含气量为0.24~1.24 m3/t,平均为0.67 m3/t。B井旧司组0.01~4.72 m3/t。其点火均可着,证实该区旧司组页岩气具有一定的勘探潜力。昭通示范区旧司组页岩与龙马溪组页岩储层品质相比,略有变差(表5),但可作为潜在的新层系,值得持续探索。
表5 昭通示范区龙马溪组与旧司组页岩储层参数对比
Table 5 Comparison table of shale reservoir parameters between longmaxi formation and Jiusi formation in Zhaotong demonstration zone
区块昭通地区龙马溪组黄金坝紫金坝威宁地区旧司组A井B井C井埋深/m251522561466(未穿)1260(未穿)800页岩厚层/m176.0174.0>63.0>149.0121.6TOC含量/%2.883.000.31~2.00/0.970.54~4.55/1.160.26~2.38/0.83含气量/(m3·t-1)3.593.360.55~1.24/0.670.01~4.72/0.550.14~0.66/0.53孔隙度/%6.354.473.15—2.19~3.29/2.81渗透率/10-15m20.02100.0322——0.0013~0.1900/0.0358脆性指数/%707762—55黏土含量/%29.6522.8037.60—44.69
(1)A井旧二段页岩微量元素U/Th,Ni/Co,V/Cr及V/(V+Ni)值分别为0.145~0.611,1.74~4.89,0.73~1.65和0.18~0.48,指示旧二段页岩沉积期主体为富氧环境。旧司组整体具有轻稀土元素富集、重稀土元素亏损及Eu、Ce轻微负异常特征,δCe和δEu值揭示旧二段沉积时处于次氧化-还原环境。
(2)A井旧司组页岩正烷烃分布以双峰型为主,色谱质谱特征表明其母质来源主要为海陆过渡环境的生物。结合旧司组遗迹化石,综合判别旧司组页岩沉积期为弱还原的海陆过渡相古环境。
(3)旧司期古生产力低于五峰组—龙马溪组沉积期,导致其有机碳含量相对较低,页岩储层品质较龙马溪组略差。海陆过渡相旧司组页岩具有较高的含气性,具备一定的勘探潜力。
[1] 渠沛然.2018年我国页岩气产量超百亿[EB/OL].https://www..chinese.com/news/news-1049855-1.html,2019-01-17.
QU Peiran.China’s shale gas production exceeded 10 billion in 2018[EB/OL].https://www.chinase.com/news/news-1049855-1.html,2019-01-17.
[2] 马新华.四川盆地南部页岩气富集规律与规模有效开发探索[J].天然气工业,2018,38(10):1-10.
MA Xinhua.Enrichment laws and scale effective development of shale gas in the southern Sichuan Basin[J].Natural Gas Industry,2018,38(10):1-10.
[3] 董大忠,王玉满,李新景,等.中国页岩气勘探开发新突破及发展前景思考[J].天然气工业,2016,36(1):19-32.
DONG Dazhong,WANG Yumang,LI Xinjing,et al.Breakthrough and prospect of shale gas exploration and development in China[J].Natural Gas Industry,2016,36(1):19-32.
[4] 陈孝红,王传尚,刘安,等.湖北宜昌地区寒武系水井沱组探获页岩气[J].中国地质,2017,44(1):188-189.
CHEN Xiaohong,WANG Chuanshang,LIU An,et al.The discovery of the shale gas in the Cambrian Shuijingtuo Formation of Yichang area,Hubei Province[J].Geology in China,2017,44(1):188-189.
[5] 何江林,刘伟,余谦,等.贵州下石炭统旧司组页岩气地质特征及有利区优选[J].地质科学,2017,52(1):203-217.
HE Jianglin,LIU Wei,YU Qian,et al.Geological characteristics of its favorable area for shale Lower Carboniferous Jiusi shale and gas exploration in Guizhou Province[J].Chinese Journal of Geology,2017,52(1):203-217.
[6] 高为.黔西南地区下石炭统旧司组页岩气成藏条件研究[J].中国煤炭地质,20l5,27(6):35-39.
GAO Wei.A study on reservoiring condition of lower carboniferous Jiusi formation shale gas in southwestern Guihou[J].Coal Geology of China,20l5,27(6):35-39.
[7] 杨瑞东,程伟,周汝贤.贵州页岩气源岩特征及页岩气勘探远景分析[J].天然气地球科学,2012,23(2):340-347.
YANG Ruidong,CHENG Wei,ZHOU Ruxian.Characteristics of organic-rich shale and exploration area of shale gas in Guizhou Province[J].Natural Gas Geoscience,2012,23(2):340-347.
[8] 秦琴,龙成雄,唐显贵.黔西南地区石炭系旧司组页岩沉积环境分析[J].中国煤炭地质,2016,28(4):35-40.
QIN Qin,LONG Chengxiong,TANG Xiangui.Analysis of Carboniferous Jiusi Formation shale sedimentary environmentin southwestern Guizhou[J].Coal Geology of China,2016,28(4):35-40.
[9] 卢树藩,何彝,杜胜江.黔南代页1井下石炭统打屋坝组页岩气地质条件及勘探前景[J].中国地质查,2016,3(4):6-11.
LU Shufan,HE Ben,DU Shengjiang.Geological conditions and exploration prospect of shale gas in Dawuba Formation of Lower Carboniferous of Daiye-1 well in southern Guizhou Province[J].Geological Survey of China,2016,3(4):6-11.
[10] 安亚运,符宏斌,陈厚国,等.黔南下石炭统打屋坝组页岩气储层物性特征及控制因素——以长页1井储层为例[J].贵州地质,2015,32(3):181-189.
AN Yayun,FU Hongbin,CHEN Houguo,et al.Reservoir property and control factors of shale gas of Dawuba Formation,Lower Carboniferous in South Guizhou:With Changye No.1 reservior as an example[J].Guizhou Geology,2015,32(3):181-189.
[11] 田硕夫,杨瑞东.贵州早石炭世岩相古地理演化及页岩气成藏特征[J].成都理工大学学报(自然科学版),2016,43(3):291-299.
TIAN Shuofu,YANG Ruidong.Lithofaeies and paleogeography evolution and characteristics of shale gas accumulation in Lower Carboniferous,Guizhou,China[J].Journal of Chengdu University of Technology(Science & Technology Edition),2016,43(3):291-299.
[12] 张本杰,秦琴,明方平,等.黔西南区旧司组页岩气储存特征及有利区优选[J].天然气技术与经济,2014,8(3):19-22.
ZHANG Benjie,QIN Qin,MING Fangping,et al.Storage features and favorable-zone optimization of shale gas in Jiusi Formation,SW Guizhou Province[J].Natural Gas Technology and Economy,2014,8(3):19-22.
[13] 陈捷,易同生,金军.黔西石炭系旧司组页岩气成藏特征及勘探开发启示[J].煤炭科学技术,2018,46(8):155-163.
CHEN Jie,YI Tongsheng,JIN Jun.Accumulation characteristics and exploration development revelation on shale gas in Jiusi Formation of Carboniferous in Qianxi[J].Coal Science and Technology,2018,46(8):155-163.
[14] 秦文,唐显贵,秦琴,等.黔西南区旧司组黑色页岩地球化学及储层特征分析[J].断块油气田,2014,21(2):181-186.
QIN Wen,TANG Xiangui,QIN Qin,et al.Analysis on reservoir characteristics and geochemistry of Jiusi Formation potential shale in Southwestern Guizhou[J].Fault Block Oil & Gas Field,2014,21(2):181-186.
[15] 李凯.威宁—水城下石炭统旧司组页岩气成藏条件[J].特种油气藏,2016,23(5):48-51,61.
LI Kai.Shale gas accumulation condition of Lower Carboniferous Jiusi Formation in Weining-Shuicheng[J].Special Oil and Gasreservoirs,2016,23(5):48-51,61.
[16] 王鹏万,张磊,李昌,等.黑色页岩氧化还原条件与有机质富集机制——以昭通页岩气示范区A 井五峰组—龙马溪组下段为例[J].石油与天然气地质,2017,38(5):933-943.
WANG Pengwan,ZHANG Lei,LI Chan,et al.Redox conditions and organic enrichment mechanism of the black shales:A case study of the Wufeng—Lower Longmaxi Formation in the well A in the Zhaotong shale gas demonstration area[J].Oil & Gas Geology,2017,38(5):933-943.
[17] 王尚彦,张慧,王天华,等.黔西水城—紫云地区晚古生代裂陷槽盆充填和演化[J].地质通报,2006,25(3):402-407.
WANG Shangyan,ZHANG Hui,WANG Tianhua,et al.Filling and evolution of the late Paleozoic Shuicheng-Ziyun aulacogen in western Guizhou,China[J].Geological Bulletin of China,2006,25(3):402-407.
[18] 汪新伟,郭彤楼,沃玉进,等.垭紫罗断裂带深部构造分段特征及构造变换作用[J].石油与天然气地质,2013,34(2):220-228.
WANG Xinwei,GUO Tonglou,WO Yujin,et al.Characteristics of deep structural segmentation and transformation of the Yaziluo fault zone[J].Oil & GasGeology,2013,34(2):220-228.
[19] 李艳芳,邵德勇,吕海刚,等.四川盆地五峰组—龙马溪组海相页岩元素地球化学特征与有机质富集的关系[J].石油学报,2015,36(12):1470-1483.
LI Yanfang,SHAO Deyong,LÜ Haigang,et al.A relationship between element geochemical characteristics and organic matter enrichment in marine shale of Wufeng Formation-Longmaxi Formation,Sichuan Basin[J].Acta Petrolei Sinica,2015,36(12):1470-1483.
[20] 李娟,于炳松,郭峰.黔北地区下寒武统底部黑色页岩沉积环境条件与源区构造背景分析[J].沉积学报,2013,31(1):20-31.
LI Juan,YU Bingsong,GUO Feng.Depositional setting and tectonic background analysis on Lower Cambrian Black Shales in the North of Guizhou Province[J].Acta Sedimentologica Sinica,2013,31(1):20-31.
[21] WEDEPOHL K H.Environmental influence on the chemical composition of shales and lays[A].AHRENS L H,PRESS F,RUNCORN S K,et al.Physics and chemistry of the Earth[C].Oxford:Pergamon,1971:305-333.
[22] 苏慧敏,杨瑞东,高军波,等.贵州惠水早石炭世打屋坝组黑色岩系稀土元素地球化学特征及沉积环境分析[J].中国稀土学报,2017,35(5):620-631.
SU Huimin,YANG Ruidong,GAO Junbo,et al.REE geochemi cal signatures and sedimentary environments of the Early Carboniferous Dawuba Formation Black Rock Series in Huishui,Guizhou[J].Journal of the Chinese Society of Rare Earths,2017,35(5):620-631.
[23] 张正山.威宁地区早石炭世旧司组沉积环境及演化[D].成都:西南石油大学,2017:30-35.
ZHANG Zhengshan.Sedimentary environment and evolution of Jiusi Formation of Early Carboniferous in Weining Area[D].Chengdu:Southwest Petroleum University,2017:30-35.
[24] JONES B,MANNING D A C.Comparison of geochemical indices used for the interpretetions in ancient mudstones[J].Chemical Geology,1994,111(1/4):111-129.
[25] 杨兴莲,朱茂炎,赵元龙,等.黔东震旦系—下寒武统黑色岩系稀土元素地球化学特征[J].地质评论,2008,54(1):3-15.
YANGXing lian,ZHU Maoyan,ZHAO Yuanlong,et al.REE geochemical characteristics of the Ediacaran-Lower Cambrian Black Rock Series in Eastern Guizhou[J].Geological Review,2008,54(1):3-15.
[26] 熊小辉,王剑,余谦,等.富有机质黑色页岩形成环境及背景的元素地球化学反演——以渝东北地区田坝剖面五峰组—龙马溪组页岩为例[J].天然气工业,2015,35(4):25-32.
XIONG Xiaohui,WANG Jian,YU Qian,et al.Element geochemistry inversion of the environment and background of organic-rich black shale formations:A case study of the Wufeng-Longmaxi black shale in the Tianba section in northeastern Chongqing[J].Natural Gas Industry,2015,35(4):25-32.
[27] WILKIN R T,BARNES H L,BRANTLEY S L.The size distribution of framboidal pyrite in modern sediments:An indicator of redox conditions[J].Geochimica et Cosmochimica Acta,1996,60(20):3897-3912.
[28] 常华进,储雪蕾.草莓状黄铁矿与古海洋环境恢复[J].地球科学进展,2011,26(5):475-481.
CHANG Huajin,CHU Xuelei.Pyrite framboids and palaeo-ocean redox condition reconstruction[J].Advances in Earth Science,2011,26(5):475-481.
[29] 唐友军,马忠梅,蒋兴超.内蒙古扎鲁特盆地陶海营子剖面林西组烃源岩生物标志化合物特征及意义[J].地质通报,2013,32(8):1315-1321.
TANG YouJun,MA Zhongmei,JIANG Xingchao.Characteristics and significance of biomarker compounds of Linxi Formation hydrocarbon source rocks along Taohaiyingzi section in Zhalute basin,Inner Mongolia[J].Geological Bulletin of China,2013,32(8):1315-1321.
[30] TEN HAVEN H L,DE LEEUW L W,RULLKOETTER J,et al.Restricted utility of the pristine/phytane ratio as a palaeo-environmenral indicator[J].Nature,1987,330(6419):641-643.
[31] MOLDOWAN J M,SEIFERT W K,GALLEGOS E J.Relationship between petroleum composition and depositional environment of petroleum source rocks[J].AAPG Bull.,1985,69:1255-1268.
[32] 王鹏万,邹辰,李娴静,等.昭通示范区页岩气富集高产的地质主控因素[J].石油学报,2018,39(7):744-753.
WANG Pengwan,ZOU Chen,LI Xianjing,et al.Main geological controlling factors of shale gas enrichment and high yield in Zhaotong demonstration area[J].Acta Petrolei Sinial,2018,39(7):744-753.
[33] 孙梦迪,于炳松,夏威,等.渝东南地区下志留统底部黑色岩系沉积环境及有机质富集机制——以鹿角剖面为例[J].东北石油大学学报,2014,38(5):51-60.
SUN Mengdi,YU Binsong,XIA Wei,et al.Depositional setting and enrichment mechanism of organic matter of the Lowe Silurian black shale series in the southeast of Chongqing:A case study from Lujiao outcrop section[J].Journal of Northeast Petroleum University,2014,38(5):51-60.