伴随着油气理论的发展和勘探开发的深入进行,煤层气、页岩油气以及致密油气等非常规油气在现有的技术条件下显示出巨大潜力[1]。煤层气全球资源量约为256.3×1012 m3[2],油气资源评价结果显示我国煤层气资源亦较为丰富,据中国矿产资源报告(2017),我国煤层气埋深2 000 m以浅地质资源量30×1012 m3,可采资源量为12.5×1012 m3,如何实现煤层气高效开发是目前面临的重要课题。
准确预测一个地区的现今地应力状态不仅有助于非常规油气的勘探开发[3-6],而且现今地应力在CO2地质封存[7]、井壁稳定性评价[6,8-9]等方面也具有重要作用。研究表明,现今地应力状态和煤层渗透率是影响煤层气开发的重要地质因素[10-12],在煤层气勘探开发过程中,煤层地应力可以通过控制压裂隙形态和扩展方向影响压裂改造效果,并在排采过程中影响煤层渗透率的动态变化。一般高产煤层气区在地质方面表现为高渗透特征,而煤层渗透率的大小受地应力、煤变质程度以及裂隙发育程度及方位等多因素控制[13-15]。
目前,常用于确定现今地应力状态的方法包括天然地震震源机制解法、钻孔崩落法、钻井诱导缝法、岩石声发射实验法、水压致裂法、测井资料估算法以及数值模拟法等[4,6,9,16-20]。前期实践证明,基于成像测井资料解译的钻孔崩落法和钻井诱导缝法是现今地应力定量化分析的重要手段,已在国内外诸多盆地和地区得到有效应用[6,9,16,18-20]。
滇东地区作为我国长江以南著名的煤层气产区,其内的雨旺区块二叠系煤层气资源丰富,具有可观的开发前景[17,21-22]。由于滇东雨旺区块相对稳定,天然地震稀少且震级较低,而岩石声发射实验、水压致裂法只可获取有限深度点的地应力信息,致使前人对雨旺区块现今地应力的研究仅限于利用注入/压降测试数据开展的地应力大小统计学分析[17,22],没有揭示出多煤层发育区不同类型岩石内地应力分布的差异性。更为重要的是,目前尚未有针对雨旺区块现今地应力方向的研究,严重限制着该区煤层气的开发。
鉴于此,笔者利用常规/成像测井资料和实测地应力参数数据对雨旺区块现今地应力场开展研究,重点量化解析该区现今地应力的方向特征、不同类型岩石与不同埋深煤层内地应力分布的差异性与规律,以期对该区煤层气的勘探开发提供新的地质参考。
滇东地区是中国西南部黔西—滇东—川南晚二叠世上扬子聚煤沉积盆地的重要组成部分,由于受到燕山期、喜马拉雅期等多期构造运动的影响,造成原型盆地解体,形成了现今众多残留盆地[21,23](图1),这些聚煤盆地是我国长江以南著名的煤炭工业基地,同时也是我国西南地区重要的工业煤层气聚集场所,具有巨大的开发前景[21]。
图1 滇东-黔西地区残留聚煤盆地分布[21]
Fig.1 Distribution of residual coal accumulating basins in the eastern Yunnan and western Guizhou regions[21]
雨旺区块位于滇东老厂复背斜南翼,面积约为81.75 km2,整体为一单斜构造,边缘断层发育(图2)。前人分析认为雨旺区块成藏条件好,是老厂盆地内最为有利的区块[21]。区内次级褶皱大多较为宽缓,断层不甚发育,主要含煤地层主要包括二叠系龙潭组和长兴组,均具有煤层数量多但厚度较薄的发育特点(图3),以层序地层格架为主的沉积背景是其重要控制因素[17,23]。龙潭组平均含煤总厚度约为39.99 m,上部含煤性较下部好,而长兴组煤层相对较薄且结构单一,在研究区仅局部可采。
滇东雨旺区块内现有6口正在排采的煤层气开发试验井,均采用“分层压裂、合层排采”的开发方式。其中,L-3,L-5和L-7井(图2)常规/成像测井资料齐全,试井数据丰富。
图2 滇东老厂盆地及雨旺区块构造纲要
Fig.2 Structural framework in the Laochang Basin and associated Yuwang Block of eastern Yunnan region
为分析方便,用于表征地应力状态的参数常简化为垂向主应力(Sv)大小、水平最大主应力(SHmax)大小、水平最小主应力(Shmin)大小以及水平主应力方向[6,8-9,16-17]。根据Sv,SHmax和Shmin相互之间的大小关系,前人将地层中的应力状态区分为3种应力机制类型(图4,深灰色为压裂缝)[24],即:① 逆断型应力机制,SHmax>Shmin>Sv;② 走滑型应力机制,SHmax>Sv>Shmin;③ 正断型应力机制,Sv>SHmax>Shmin。
图4 地应力机制类型[26]
Fig.4 Types of in-situ stress regime[26]
笔者主要利用成像测井解译的钻孔崩落和诱导缝分析现今地应力方向。钻孔崩落是由于地壳内存在水平差应力,从而在钻孔壁形成应力集中,当应力差大于地层中岩石的抗压强度时,井眼就会产生崩落[16,25]。在钻井过程中,钻井液质量与井孔压力的差异可诱导井壁破裂,形成钻井诱导缝[9,16]。在成像测井图上,钻孔崩落表现为两条较宽且呈180°或接近180°对称分布的暗色或黑色垂直条带或斑块,暗色区域内地质特征不清楚,边界模糊。诱导缝可表现为两种形态:一种接近垂直,呈两条黑色细线条,以180°或接近180°对称分布,延伸较长,且方位基本稳定,线条宽窄可有微小变化;另一种为雁列式排列的两组裂缝带,裂缝带呈180°或接近180°对称分布[6,8-9,16,18-19,25-26]。基于室内实验分析钻孔崩落的力学原理,证实崩落椭圆长轴方向与水平最小主应力方向平行,而钻井诱导缝的方位指示水平最大主应力的方向(图5)[4,6,8-9,16,18-20,25-26]。
图5 钻孔崩落、诱导缝与现今地应力方向之间的关系[18]
Fig.5 Relationship between borehole breakouts,driling-induced fractures and present-day in-situ stress orenttion[18]
在利用测井资料估算地应力大小时,垂向主应力一般可利用地表到目标深度的密度数据进行积分计算
Sv=ρ(h)gdh
(1)
式中,ρ为岩石密度;h为埋藏深度;g为重力加速度。
对水平主应力的估算,主要借助于地应力测井计算模型。Anderson模型基于广义虎克定律推导获取,适用性较广。本次研究中,为了避免受单一地质背景的限制,选择带有构造应力的Anderson模型进行地应力估算
(2)
(3)
式中,μ为岩石泊松比;α为Biot系数;Po为孔隙压力;ST和St为附加应力。
地应力测井估算模型中岩石力学参数主要基于声波测井数据按照式(4)计算获取,但其结果为动态数据,与静态岩石力学数据存在一定的误差。因此,需要建立岩石力学实验与测井计算数据之间的量化关系:
(4)
式中,μd为岩石动态泊松比;Vp和Vs分别为压缩波波速和剪切波波速。
滇东雨旺区块主要的岩性包括煤、泥岩、粉砂质泥岩、泥质粉砂岩、粉砂岩和细砂岩(图3),本次研究基于三轴岩石力学实验,测试不同岩性岩石的弹性模量和泊松比,统计见表1。
表1 滇东雨旺区块不同岩性岩石力学实验结果
Table 1 Mechanical parameters for different rock types in the Yuwang Block of eastern Yunnan region
岩性弹性模量/GPa泊松比煤0.15~0.58/0.350.16~0.28/0.22泥岩1.46~1.91/1.680.31~0.36/0.33粉砂质泥岩1.85~3.85/2.830.18~0.41/0.31泥质粉砂岩2.39~4.90/3.420.26~0.41/0.30粉砂岩3.12~5.12/4.320.17~0.42/0.29细砂岩4.17~5.88/4.860.21~0.31/0.28
注:数据格式最小值~最大值/平均值。
图3 滇东雨旺区块二叠系长兴组与龙潭组地层柱状
Fig.3 Stratigraphic column for the Permian Changxing and Longtan Formations in the Yuwang Block of eastern Yunnan region
基于成像测井资料,在雨旺区块3口井内共解译出12处钻孔崩落段和196条钻井诱导缝(图6)。根据钻孔崩落和钻井诱导缝方位与地应力之间的关系,可知:雨旺区块水平最大主应力方向介于NNW—SSE~NNE—SSW,呈现近N—S向的优势方位(图6,7)。
图6 滇东雨旺区块钻井诱导缝成像测井解译
Fig.6 Drilling-induced fractures (DIFs) in the Yuwang Block of eastern Yunnan region based on imaging logs
基于带有构造应力的Anderson地应力计算模型,在实测数据(表2)的约束下,反推式(2)和式(3)中附加应力的大小,取其平均值分别为ST=10.643 2 MPa和St=4.497 2 MPa。由此,可计算获取雨旺区块现今地应力剖面(图8)。
地应力分析结果的可靠性依据式(5)误差计算公式进行分析,总体上,本次研究中的误差较小,介于0.22%~12.27%,大多数在10%以内(表2),表明本次开展的雨旺区块现今地应力预测结果较为可信。
表2 滇东雨旺区块现今地应力实测与计算结果对比
Table 2 Comparison of present-day in-situ stress magnitudes between measurements and calculations from well logs in the Yuwang Block of eastern Yunnan region
井名深度/mSHmax实测值/MPa计算值/MPa误差/%Shmin实测值/MPa计算值/MPa误差/%L-3643.50~645.3017.1919.3012.2711.7913.1511.54L-3698.00~700.0020.9220.253.2014.4514.102.42L-5718.00~721.4018.7020.549.8413.4714.406.90L-7614.00~617.3019.8119.561.2613.3913.420.22L-7633.40~636.1022.3819.8611.2615.1713.719.62
(5)
式中,r为误差;dm为实测地应力值;dp为计算地应力值。
通过测井计算表明,滇东雨旺区块二叠系长兴组和龙潭组现今地应力大小随埋藏深度的增加而逐渐增大,表现出SHmax>Sv>Shmin的特征,总体呈现走滑型应力机制(图8)。煤层发育段的地应力值较其顶底板低(图8),滇东雨旺区块主要煤层的现今地应力大小参见表3。
表3 滇东雨旺区块二叠系主要煤层现今地应力统计
Table 3 Statistical results showing the present-day in-situ stress magnitudes in the Permian main coal-bearing seams of Yuwang Block,eastern Yunnan region MPa
煤层号L-3井SvSHmaxShminL-5井SvSHmaxShminL-7井SvSHmaxShmin2号15.457~15.47615.46617.379~18.37918.07411.233~12.23311.92817.866~17.88617.87518.691~19.56419.20612.545~13.41813.06015.074~15.11215.09117.782~19.44218.92511.636~13.29612.7793号15.573~15.58715.58017.149~20.09718.44211.003~13.95112.29618.225~18.24818.23619.004~19.85119.48912.858~13.70513.343———4号15.960~15.98315.97117.449~18.76418.35711.303~12.61812.21118.497~18.51218.50418.857~19.52019.30612.711~13.37413.160———7+8号16.749~16.79516.77018.500~19.84919.30012.354~13.70313.15419.166~19.21319.18919.192~21.26120.54613.046~15.11514.40016.331~16.38016.35318.327~20.07619.56512.181~13.93013.4199号17.328~17.41317.37118.677~19.80019.29312.531~13.65413.14719.972~20.00519.98618.759~21.21120.38612.613~15.06514.24016.789~16.83216.80918.670~20.45019.86112.524~14.30413.71513号17.987~18.00217.99418.441~19.62019.17512.295~13.47413.02920.665~20.71020.68719.638~21.36220.81713.492~15.21614.67117.546~17.58717.56518.659~20.57920.07412.513~14.43313.92816号18.438~18.46818.45118.776~21.00520.25012.630~14.85914.10420.895~20.91120.90219.510~22.68321.15213.364~16.53715.00618.343~18.45818.39619.255~20.53719.99813.109~14.39113.85218号19.043~19.12619.08119.561~20.82320.37213.415~14.67714.226——————19号19.281~19.31319.29620.119~22.02721.19313.973~15.88115.04721.807~21.83821.82220.892~22.28921.82414.746~16.14315.678———
注:数据格式为
迄今,国内外诸多含煤盆地针对煤层现今地应力与煤层渗透率开展了一系列卓有成效的研究[3,5,10-14],煤储层渗透率很大程度上受现今地应力场的影响。一般而言,煤层中有效应力的变化造成煤体变形,进而导致煤层渗透率发生变化,在其它影响因素基本一致的情况下,煤层渗透率随有效地应力的增大而呈指数减小[10-14,17,22]。
对雨旺区块开展地应力对煤储层渗透性影响的分析,结果显示,区内煤储层渗透率随有效地应力的增大亦呈现指数减小的趋势(图9,y为煤储层渗透率;x为有效水平最小主应力;R为相关系数)。有效地应力越大,煤层渗透性越差。
图7 滇东雨旺区块水平最大主应力方位玫瑰花图(n=208)
Fig.7 Rose diagram showing the horizontal maximum principal stress orientations in the Yuwang Block of eastern Yunnan rgion (n=208)
图8 滇东雨旺区块二叠系长兴组和龙潭组现今地应力剖面
Fig.8 Vertical distribution of present-day in-situ stress magnitudes in the Permian Changxing and Longtan Formations of Yuwang Block,eastern Yunnan region
图9 雨旺区块煤储层渗透率与有效水平最小主应力关系
Fig.9 Relationship between the permeability and effective hori-zontal minimum principal stress in coal seams of Yuwang Block
煤层内一般均会存在不同发育程度的割理系统,控制着煤储层的渗透性[27]。煤层内割理的发育是一种相对可逆的破裂变形构造,形成于煤化作用的某一阶段并受当时区域构造应力场的约束。割理开度受现今地应力场影响巨大,地应力场的变化可造成割理的开启和闭合,进而影响煤层渗透率的变化[28]。滇东雨旺区块内的煤层主要发育两组割理,矿井实测显示,其优势走向方位分别为330°~150°和46°~226°,其中走向为330°~150°的一组割理与现今地应力场SHmax方位夹角较小,在现今地应力场作用下其有效性更好,可成为煤层气运移和产出的通道。
煤层气开发通常需要对煤层进行压裂改造以扩大煤层连通性、加速煤层压力降低,达到提升产气量的目的[29]。压裂缝的空间几何形态主要受控于现今地应力状态和岩石力学性质[16]。当垂向主应力为最小主应力时,压裂产生水平裂缝;当水平最小主应力为最小主应力时,压裂产生垂向裂缝(图4)。
对滇东雨旺区块而言,二叠系长兴组和龙潭组现今地应力主要表现为走滑型应力机制,即SHmax>Sv>Shmin(图8),据此,可推测长兴组和龙潭组煤层压裂后主要形成垂向延伸的压裂缝系统。
另外,高差应力通常会形成简单的压裂缝系统,而较低的差应力则产生复杂压裂缝系统(图10)[17,20]。对于雨旺区块煤层而言,水平地应力差一般在6 MPa左右,差应力相对较小,推测可在煤层内形成复杂压裂缝系统。
图10 不同地应力条件下煤层中压裂缝扩展模式[26]
Fig.10 Different patterns showing hydraulic fracture propag-ations in coal seams due to different in-situ stress states[26]
(1)由成像测井解译的钻孔崩落和钻井诱导缝特征反映出雨旺区块水平最大主应力方向介于NNW—SSE~NNE—SSW,呈近N—S向的优势方位。
(2)现今地应力剖面表明,滇东雨旺区块二叠系长兴组和龙潭组的现今地应力大小随埋藏深度的增加而逐渐增大,总体呈现走滑型应力机制,且煤层发育段的地应力值较其顶底板低。
(3)雨旺区块煤层渗透率随有效地应力的增大而呈指数减小,有效地应力越大,煤储层渗透性越差。
(4)雨旺区块煤层中发育两组割理系统,其中走向约为330°~150°的一组割理与现今地应力方位夹角较小,在现今地应力作用下其有效性更好,对煤层气开发的贡献更大。
(5)煤层压裂改造后,在走滑型现今地应力机制的控制下,推测雨旺区块煤层中形成的压裂缝沿垂向扩展。另外,水平地应力差相对较小,可在煤层内产生复杂压裂缝系统。
[1] 贾承造,郑民,张永峰.中国非常规油气资源与勘探开发前景[J].石油勘探与开发,2012,39(2):129-136.
JIA Chengzao,ZHENG Min,ZHANG Yongfeng.Unconventional hydrocarbon resources in China and the prospect of exploration and development[J].Petroleum Exploration and Development,2012,39(2):129-136.
[2] 孙茂远,刘贻军.中国煤层气产业新进展[J].天然气工业,2008,28(3):5-9.
SUN Maoyuan,LIU Yijun.New progress in coalbed methane industry of China[J].Natural Gas Industry,2008,28(3):5-9.
[3] BELL J S.In-situ stress and coal bed methane potential in Western Canada[J].Bulletin of Canadian Petroleum Geology,2006,54:197-220.
[4] TINGAY M R P,HILLS R R,MORLEY C K,et al.Present-day stress and neotectonics of Brunei:Implications for petroleum exploration and production[J].American Association of Petroleum Geologists Bulletin,2009,93(1):75-100.
[5] 姜波,汪吉林,屈争辉,等.大宁-吉县地区地应力特征及其对煤储层渗透性的影响[J].地学前缘,2016,23(3):17-23.
JIANG Bo,WANG Jilin,QU Zhenghui,et al.The stress characteristics of the Daning-Jixian area and its influence on the permeability of the coal reservoir[J].Earth Science Frontiers,2016,23(3):17-23.
[6] JU W,SHEN J,QIN Y,et al.In-situ stress state in the Linxing region,eastern Ordos Basin,China:Implications for unconventional gas exploration and production[J].Marine and Petroleum Geology,2017,86:66-78.
[7] BUSTIN R M,CUI X,CHIKATAMARLA L.Impacts of volumetric strain on CO2 sequestration in coals and enhanced CH4 recovery[J].American Association of Petroleum Geologists Bulletin,2008,92:15-29.
[8] RAJABI M,TINGAY M R P,HEIDBACH O.The present-day state of tectonic stress in the Darling Basin,Australia:Implications for exploration and production[J].Marine and Petroleum Geology,2016,77:776-790.
[9] ZOBACK M D,BARTON C A,BRUDY M,et al.Determination of stress orientation and magnitude in deep wells[J].International Journal of Rock Mechanics and Mining Sciences,2003,40:1049-1076.
[10] 孟召平,蓝强,刘翠丽,等.鄂尔多斯盆地东南缘地应力、储层压力及其耦合关系[J].煤炭学报,2013,38(1):122-128.
MENG Zhaoping,LAN Qiang,LIU Cuili,et al.In-situ stress and coal reservoir pressure in southeast margin of Ordos Basin and their coupling relations[J].Journal of China Coal Society,2013,38(1):122-128.
[11] LI Y,TANG D Z,XU H,et al.In-situ stress distribution and its implication on coalbed methane development in Liulin area,eastern Ordos Basin,China[J].Journal of Petroleum Science and Engineering,2014,122:488-496.
[12] ZHAO J L,TANG D Z,XU H,et al.Characteristic of in situ stress and its control on the coalbed methane reservoir permeability in the eastern margin of the Ordos Basin,China[J].Rock Mechanics and Rock Engineering,2016,49,3307-3322.
[13] 叶建平,史保生,张春才.中国煤储层渗透性及其主要影响因素[J].煤炭学报,1999,24(2):118-122.
YE Jianping,SHI Baosheng,ZHANG Chuncai.Coal reservoir permeability and its controlled factors in China[J].Journal of China Coal Society,1999,24(2):118-122.
[14] 宋岩,柳少波,琚宜文,等.含气量和渗透率耦合作用对高丰度煤层气富集区的控制[J].石油学报,2013,34(3):417-426.
SONG Yan,LIU Shaobo,JU Yiwen,et al.Coupling between gas content and permeability controlling enrichment zones of high abundance coalbed methane[J].Acta Petrolei Sinica,2013,34(3):417-426.
[15] 李松,汤达祯,许浩,等.应力条件制约下不同埋深煤储层物性差异演化[J].石油学报,2015,36(S1):68-75.
LI Song,TANG Dazhen,XU Hao,et al.Evolution of physical differences in various buried depth of coal reservoirs under constraint of stress[J].Acta Petrolei Sinica,2015,36(S1):68-75.
[16] 周文,闫长辉,王世泽,等.油气藏现今地应力场评价方法及应用[M].北京:地质出版社,2007:1-179.
[17] JU W,JIANG B,QIN Y,et al.The present-day in-situ stress field within coalbed methane reservoirs,Yuwang Block,Laochang Basin,south China[J].Marine and Petroleum Geology,2019,102:61-73.
[18] HILLIS R R,REYNOLDS S D.In situ stress field of Australia[J].Geological Society of America Special Papers,2003,372:49-58.
[19] JU W,LI Z L,SUN W F,et al.In-situ stress orientations in the Xiagou tight oil reservoir of Qingxi Oilfield,Jiuxi Basin,northwestern China[J].Marine and Petroleum Geology,2018,98:258-269.
[20] RAJABI M,TINGAY M,KING R,et al.Present-day stress orientations in the Clarence-Moreton Basin of New South Wales,Australia:a new high density dataset reveals local stress rotations[J].Basin Research,2017,29:622-640.
[21] 桂宝林.黔西滇东煤层气地质与勘探[M].昆明:云南科技出版社,2001:1-215.
[22] 吴财芳,王肖,刘小磊,等.滇东老厂矿区多煤层条件下地应力特征及其影响研究[J].煤炭科学技术,2019,47(1):118-124.
WU Caifang,WANG Xiao,LIU Xiaolei,et al.Study on geostress features and influences under multi-seam condition in Laochang mining area of east Yunnan[J].Coal Science and Technology,2019,47(1):118-124.
[23] 王小川.黔西川南滇东晚二叠世含煤地层沉积环境与聚煤规律[M].重庆:重庆大学出版社,1996:1-296.
[24] ANDERSON E M.The dynamics of faulting and dyke formation with applications to britain (Second Edition)[M].Oliver,Edinburgh,1951:1-206.
[25] 张景和,孙宗颀.地应力、裂缝测试技术在石油勘探开发中的应用[M].北京:石油工业出版社,2001:1-130.
[26] BROOKE-BARNETT S,FLOTTMANN T,PAUL P K,et al.Influence of basement structures on in-situ stresses over the Surat Basin,southeast Queensland[J].Journal of Geophysical Research,2015,120(7):4946-4965.
[27] AYERS Jr W B.Coalbed gas systems,resources,and production and a review of contrasting cases from the San Juan and Power River Basin[J].AAPG Bulletin,2002,86(11):1853-1890.
[28] 李勇,汤达祯,许浩,等.鄂尔多斯盆地柳林地区煤储层地应力场特征及其对裂隙的控制作用[J].煤炭学报,2014,39(S1):164-168.
LI Yong,TANG Dazhen,XU Hao,et al.Characteristics of in-situ stress field in Liulin area,Ordos Basin and its control on coal fractures[J].Journal of China Coal Society,2014,39(S1):164-168.
[29] 孟召平,田永东,李国富.沁水盆地南部地应力场特征及其研究意义[J].煤炭学报,2010,35(6):975-981.
MENG Zhaoping,TIAN Yongdong,LI Guofu.Characteristics of in-situ stress field in southern Qinshui Basin and its research significance[J].Journal of China Coal Society,2010,35(6):975-981.