岩石单轴、常规三轴是测定岩石力学参数的基础性实验,通过实验获得相关力学参数,建立岩石力学理论并解决岩体工程问题。力学参数的科学合理选择对工程岩体的稳定至关重要,故国内外学者从多角度对岩石力学性质进行了研究。主要集中在以下方面:① 在岩石的加、卸荷力学特性方面,如大理岩应力路径和荷载速率[1-2]、卸荷方向[3]对强度和破坏特征的影响,真三轴岩石卸荷力学特性的研究[4],煤-岩组合强度[5],轴向、侧向同时卸荷砂岩强度特性[6],脆性硬质红砂岩加、卸载强度特征[7]等。② 在损伤特性及强度影响因素关联性分析方面,有表面裂纹量化参数与应力状态之间的关系[8],花岗岩压缩变形各阶段的破裂演化机制[9],砂岩在酸性环境干湿循环作用下强度的劣化规律[10],砂岩抗拉强度、破坏特征、能量参数和劈裂面微观形貌变化规律及相关性[11],砂岩裂纹演化特征[12]、各向异性对砂岩强度的影响[13],纵向裂隙对砂岩单轴强度的劣化特征[14],大理岩损伤破坏声发射特征[15],顶板砂岩声发射特性及力学行为[16]。微结构量化参数和无侧限抗压强度关联性分析[17]等。③ 在强度准则方面,有三轴强度准则[18],扩展HB准则[19],节理岩体强度准则[20],完整岩石的非线性强度[21],对常用强度准则与判据的试验分析验证[22-24],多轴应力状态下预测岩体破坏的新判据[25],人工神经网络多轴强度模型[26]等。
综上可见,国内外学者对各种岩石的力学和变形特性进行了大量研究,但对不同种类砂岩之间力学变形特性差异的对比研究还不够深入(如不同种类砂岩强度差异内在原因分析等)。鉴于此,笔者开展了相关分析,研究成果可为地下工程选址、围岩稳定性分析提供参考依据。
试验砂岩采自四川省内江市,岩样经过钻、磨工序加工成尺寸约φ50 mm×100 mm的圆柱形标准试件,如图1所示,试件误差满足《工程岩体试验方法标准》要求。为了保证试验岩样的均质性通过波速测定进行了试样的筛选,3种砂岩的平均密度和纵波波速见表1。
图1 3种砂岩试样
Fig.1 Three kinds of sandstone samples
表1 3种砂岩的平均密度与纵波波速
Table 1 Density and longitudinal wave velocity of three kinds of sandstone
岩性平均密度/(kg·m-3)纵波波速/(km·s-1)白砂岩2 417.762.482 5黄砂岩2 347.672.718 9红砂岩2 401.252.948 4
试验采用RMT-150B岩石力学试验系统,进行了3种砂岩的单轴、常规三轴压缩和巴西劈裂试验。利用1 000 kN力传感器测量垂直荷载,5 mm位移传感器测量试件垂直变形。单轴压缩试验每种岩石取3个试样,试验结果取平均值,巴西劈裂试验每种岩石取5个试样,试验结果取平均值。加载方式采用位移控制,轴向加载速率为0.002 mm/s,围压加载速率为0.1 MPa/s。常规三轴加载初期采用静水压力条件加载至预定围压,然后伺服控制围压,轴向采用0.002 mm/s的速率施加轴向压力直至试样破坏。
图2为砂岩常规三轴压缩试验的应力-应变曲线,压缩曲线经历压密、弹性、屈服和破坏4个阶段。在压密和弹性变形阶段3种砂岩的应力应变曲线形态基本相同。在屈服阶段差异明显,白砂岩屈服阶段最显著,其次是红砂岩,黄砂岩的屈服段最短。随着围压的增大,白砂岩和红砂岩的屈服特性更加显著,屈服段逐渐增长,出现显著的塑性变形,峰值应变增加,逐渐由脆性向延性转化,而黄砂岩的屈服特性受围压影响较小。在破坏阶段,白砂岩峰值后应力跌落速度相对缓慢,红砂岩和黄砂岩的蜂后应力迅速降低,表明黄砂岩和红砂岩破坏时的能量释放要比白砂岩剧烈。
图2 3种砂岩不同围压应力应变曲线
Fig.2 Stress-strain curves of three kinds of sandstone under different confining pressure
屈服阶段主要发生不可恢复的塑性变形,可见白砂岩和红砂岩的塑性变形能力比黄砂岩强。塑性变形主要是岩样内部形成微裂隙,在外力作用下颗粒相对滑移产生的,因而从微观角度分析,白砂岩和红砂岩承受损伤变形能力更强。故可知,白砂岩承受变形能力最强延性最好,红砂岩居中,而黄砂岩承受变形能力最差脆性最强。
表2给出3种砂岩的弹性模量E、变形模量E50和峰值应变值。弹性模量为应力应变曲线近似直线段(30%~70%峰值强度)斜率,变形模量为50%峰值强度点与原点连线斜率,峰值应变为峰值点处对应轴向应变值。
随着围压的增大,3种砂岩的弹性模量和变形模量也在增大(只有白砂岩40 MPa时例外)。围压从5 MPa增加到40 MPa,白砂岩、红砂岩和黄砂岩的弹性模量增幅分别为22%,38%和60%,变形模量的增幅分别为74%,90%和125%。可见围压对黄砂岩弹性模量和变形模量的影响最显著,围压对白砂岩弹性模量和变形模量的影响相对最小。从5 MPa到40 MPa,白砂岩、红砂岩和黄砂岩变形模量增幅与弹性模量增幅之比分别为3.36,2.37和2.08,表明变形模量相对弹性模量受围压影响增加更快。以20 MPa为例,黄砂岩、红砂岩相对白砂岩的弹性模量比值分别为1.34和1.19,变形模量的比值分别为1.25和1.24,可见3种砂岩弹性模量和变形模量由高到低的顺序为黄砂岩、红砂岩和白砂岩。综合分析可见,砂岩弹性模量和变形模量受围压影响的提高程度与低围压时弹性模量和变形模量的大小成正比。
随着围压的增大,3种砂岩的峰值应变值总体在增加。围压从5 MPa增加到40 MPa,白砂岩、红砂岩和黄砂岩的峰值应变值增幅分别为67%,49%和43%。黄砂岩相对白砂岩和红砂岩,5 MPa时的峰值应变最大,40 MPa时的峰值应变却最小。表明3种砂岩受围压影响的变形大小顺序为:白砂岩>红砂岩>黄砂岩。
表2 3种砂岩的变形特征
Table 2 Deformation characteristics of three kinds of sandstone
岩性σ3/MPaE/GPaE50/GPaε0/10-3513.689.739.641015.2512.2410.13白砂岩2016.3114.4211.373017.4417.7213.814016.7116.9016.07516.4812.439.801018.2815.1811.01红砂岩2019.4117.8713.173020.2920.5614.354022.8123.5914.61517.8711.8010.081021.6915.5810.25黄砂岩2021.8617.9912.823028.3124.9611.824028.6126.5314.37
图3为3种砂岩破坏时的最大主应力σ1与围压的关系,并用Coulomb强度准则拟合为
σ1=kσ3+m
(1)
其中,m为砂岩拟合回归获得的单轴抗压强度;k为围压对砂岩承载能力的影响系数。最大主应力与围压的关系又可表示为
(2)
进一步获得砂岩内摩擦角φ和黏聚力c与k和m的关系为
φ=arcsin[(k-1)/(k+1)]
(3)
c=m(1-sin φ)/(2cos φ)
(4)
白砂岩、红砂岩和黄砂岩拟合获得的参数和对应的黏聚力与内摩擦角结果见表3。图3采用3个单轴抗压强度平均值与5个不同围压强度进行回归。由图3可知,Coulomb强度准则获得单轴抗压强度(m)都高于实际砂岩的单轴抗压强度值,主要原因在于单轴试验岩样破坏是张剪复合破坏,强度较低,而由不同围压回归获得的单轴抗压强度是理想单轴剪切破坏强度,相应较高。由表3可知,理想单轴剪切破坏强度,黄砂岩最大,红砂岩次之,白砂岩最小。
图3 3种砂岩峰值强度与围压的关系
Fig.3 Relationship of sandstone peak strength and confining pressures of thres rinds of sandstone
表3 3种砂岩的强度参数
Table 3 Strength parameters of three kinds of sandstone
岩性km/MPaφ/(°)黏聚力c/MPa白砂岩4.1675.5637.7618.53红砂岩5.2991.0143.0019.79黄砂岩6.8394.8948.1318.15
3种岩石的内摩擦角:黄砂岩>红砂岩>白砂岩,黄砂岩和红砂岩的内摩擦角分别是白砂岩内摩擦角的1.28倍和1.14倍。3种砂岩的黏聚力相差较小,最大黏聚力(红砂岩)仅为最小黏聚力(黄砂岩)的1.09倍。砂岩的强度是由黏聚力和内摩擦角共同提供,因而从分析可见,3种砂岩强度的差异主要是由于内摩擦角的不同导致的。
为了描述围压对3种砂岩强度的影响差异,定义围压影响系数η为
(5)
式中,σc为砂岩单轴抗压强度。
利用3种砂岩三轴试验数据,按照式(5)计算出围压影响系数,并将围压影响系数随围压的变化关系绘于图4。
图4 砂岩围压影响系数随围压的变化
Fig.4 Variation of confining pressure effect coefficient of sandstone with confining pressure
由图4可知,3种砂岩的围压影响系数变化规律一致,随着围压的增加整体都按负指数关系减小。相同围压下,白砂岩的围压影响系数小,红砂岩的居中,而黄砂岩的最大。较低围压下围压影响系数减小显著,围压较大时围压影响系数减小缓慢,由图4可知,20 MPa是3种砂岩围压影响系数减小快慢的明显转折点。这表明对于3种砂岩,围压小于20 MPa时,围压增大对强度的提高效应显著,围压大于20 MPa时,增大围压对强度的提高效应减小并逐渐趋于定值。白砂岩围压影响系数趋于4.22,红砂岩的趋于5.37,黄砂岩的趋于7.02,可见3种砂岩中围压对黄砂岩的强度提高效应显著。
3种砂岩的巴西劈裂强度、单轴抗压强度和不同围压强度值及强度之间的比值关系见表4,表4中的比值是以单轴抗压强度为基准,其他强度为单轴抗压强度的倍数。
由表4可以看出,巴西劈裂强度远低于单轴抗压强度,3种砂岩的巴西劈裂强度为单轴抗压强度的3.5%~5.8%。黄砂岩的巴西劈裂强度最低而红砂岩的最高,但黄砂岩的单轴抗压强度在3种砂岩中却是最高的,出现这一现象的主要原因在于白砂岩和红砂岩的均质性较好,而黄砂岩的纹理较明显,受其纹理影响导致巴西劈裂强度较低。围压对3种砂岩的强度影响顺序为:黄砂岩、红砂岩和白砂岩,当围压达到40 MPa时,黄砂岩、红砂岩和白砂岩的强度分别是单轴抗压强度的4.846 7倍、4.015 3倍和3.685 4倍。同一种砂岩,随着围压的增加强度提高效应会减弱。进一步的分析发现,砂岩的单轴抗压强度越高,围压对其强度的提高效应越明显。
表4 3种砂岩的强度比值关系
Table 4 Strength ratio relationship of three kinds of sandstone
项目白砂岩强度/MPa比值黄砂岩强度/MPa比值红砂岩强度/MPa比值巴西劈裂强度2.922 80.046 02.639 00.035 14.398 40.058 7单轴抗压强度63.563 41.000 075.104 41.000 074.999 81.000 05 MPa围压强度99.814 21.570 3137.528 21.831 2123.628 61.648 410 MPa围压强度124.968 81.966 1179.669 72.392 3156.422 32.085 620 MPa围压强度162.968 72.563 9232.629 43.097 4202.917 12.705 630 MPa围压强度204.597 53.218 8297.844 73.965 7242.267 53.230 240 MPa围压强度234.257 23.685 4364.007 24.846 7301.150 24.015 3
根据白砂岩、红砂岩和黄砂岩的三轴试验结果,在σ-τ坐标系中绘制不同岩性的应力圆,并拟合建立线性、抛物线和幂函数3种Mohr强度包络线(图5),要求3种包络线在正应力为0时,切应力都为相应岩石的黏聚力。
图5 3种砂岩常规三轴试验强度包络线
Fig.5 Strength envelope curves of conventional triaxial test of thres kinds of sandstone
白砂岩幂函数Mohr强度准则为
τ=0.94σ0.952+18.53
红砂岩幂函数Mohr强度准则为
τ=1.10σ0.959+19.79
黄砂岩幂函数Mohr强度准则为
τ=1.27σ0.968+18.15
由图5可以看出,当统一满足正应力为0,切应力为黏聚力的条件时,抛物线型Mohr强度包线偏离实际值较大,在高应力区理论值比实际值偏小很多,不能反映真实强度。线性Mohr强度包线和幂函数Mohr强度包线基本都能和应力圆很好相切,但幂函数Mohr强度包线相对线性Mohr强度包线吻合程度更好,且在高应力区线性Mohr强度包线相对幂函数Mohr强度包线偏高,研究表明Mohr强度包线并非是线性的而是按非线性规律变化,因此采用幂函数型Mohr强度准则能更好的确定岩石强度,符合工程实际。
3种砂岩在不同围压下的破坏形式如图6所示。由图6可见,砂岩试样有两种破坏形式:剪切破坏和张剪复合破坏。剪切破坏根据破裂角度可以分为缓倾角和陡倾角剪切破坏两种形式,对于尺寸为50 mm×100 mm的试样而言,对角截面的倾角为63.43°,当实际破裂角小于该值时称为缓倾角破坏,大于该值时称为陡倾角剪切破坏。白砂岩发生典型的缓倾角剪切破坏,红砂岩和黄砂岩既有张剪复合破坏又有陡倾角剪切破坏。白砂岩破裂面单一,破裂面近似平面,如图7所示,破坏时沿单一剪切平面发生滑移,个别试样的水平裂纹是由于滑移过程围压挤压作用形成,在5~40 MPa围压条件下,白砂岩均发生剪切破坏。在5~10 MPa围压条件下,红砂岩和黄砂岩发生张剪复合破坏,除了有剪切裂纹外,还有平行于轴向的劈裂裂纹,由于黄砂岩的主控破裂面接近直立,所以张拉劈裂效应比红砂岩更加显著。在20~40 MPa围压条件下,红砂岩和黄砂岩发生陡倾角剪切破坏,破裂以主控剪切面控制,红砂岩破坏面形态为锥面而黄砂岩破坏面为高低不平的起伏面。
图6 3种砂岩的破坏特征
Fig.6 Failure samples of thres kinds of sandstone
图7 3种砂岩典型破裂面形态
Fig.7 Typical fracture surface form of three kinds of sandstone
表5给出了根据Coulomb强度准则预测的破裂角(θ=45°+φ/2),Coulomb破裂角是将岩土体作为均质体导出的,且与围压没有关系,理论破裂角都在实际破裂角范围之内。白砂岩的实际破裂角为57°~63°,红砂岩的实际破裂角为58°~74°,黄砂岩的实际破裂角为63°~76°,可见3种砂岩的实际破裂角比较离散,这是由于砂岩不均质性和内部缺陷的存在,以及试样受端部约束的影响,导致破裂角的波动和随机性。尽管试样的实际破裂角有些离散,但就总体变化趋势而言,破裂角随围压的增加有减小的趋势。
表5 3种砂岩破裂角
Table 5 Fracture angle of three kinds of sandstone
岩性φ/(°)理论破裂角θ/(°)实际破裂角θ′/(°)白砂岩37.7663.8857~63红砂岩43.0066.5058~74黄砂岩48.1369.0663~76
(1)随着围压的增大,白砂岩和红砂岩的屈服特性更加显著,屈服段逐渐增长,出现显著的塑性变形,而黄砂岩的屈服特性受围压影响较小。白砂岩峰值后应力降速度相对缓慢,红砂岩和黄砂岩的蜂后应力迅速降低。
(2)围压对黄砂岩弹性模量和变形模量的影响最显著,对白砂岩弹性模量和变形模量的影响相对最小。砂岩弹性模量和变形模量受围压影响的提高程度与低围压时弹性模量和变形模量的大小成正比。
(3)3种岩石的内摩擦角大小关系:黄砂岩>红砂岩>白砂岩,3种砂岩的黏聚力相差较小,故3种砂岩强度的差异主要是由于内摩擦角的不同导致的。
(4)3种砂岩的围压影响系数随着围压的增加整体都按负指数关系减小。20 MPa是3种砂岩围压影响系数减小快慢的明显转折点。
(5)3种砂岩的巴西劈裂强度为单轴抗压强度的3.5%~5.8%。黄砂岩的巴西劈裂强度最低而红砂岩的最高。
(6)通过3种砂岩试验结果分析线性Mohr强度、抛物线型和幂函数Mohr强度准则,指出幂函数Mohr强度准则能更好的反应岩石强度的非线性特征。
(7)白砂岩发生典型的缓倾角剪切破坏,红砂岩和黄砂岩在5~10 MPa围压下发生张剪复合破坏,在20~40 MPa围压下发生陡倾角剪切破坏。
[1] 沙鹏,伍法权,常金源.大理岩真三轴卸载强度特征与破坏力学模式[J].岩石力学与工程学报,2018,37(9):2084-2092.
SHA Peng,WU Faquan,CHANG Jinyuan.Unloading strength and failure pattern of marble under true triaxial test[J].Chinese Journal of Rock Mechanics and Engineering,2018,37(9):2084-2092.
[2] 肖桃李,黄梅,李新平.考虑围压效应的深埋大理岩强度变形特性研究[J].地下空间与工程学报,2018,14(2):362-368.
XIAO Taoli,HUANG Mei,LI Xinping.Research on strength and deformation with Marble of deep rock mass considering confining pressure effect[J].Chinese Journal of Underground Space and Engineering,2018,14(2):362-368.
[3] 王璐,刘建锋,杨昊天,等.深埋大理岩卸载力学特性的实验研究[J].四川大学学报(工程科学版),2014,46(2):46-51.
WANG Lu,LIU Jianfeng,YANG Haotian,et al.Experimental research on mechanical properties of deeply buried marble under unloading conditions[J].Journal of Sichuan University(Engineering Science Edition),2014,46(2):46-51.
[4] DU Kun,LI Xibing,LI Diyuan,et al.Failure properties of rocks in true triaxial unloading compressive test[J].Transactions of Nonferrous Metals Society of China,2015,25(2):571-581.
[5] 左建平,陈岩,张俊文,等.不同围压作用下煤-岩组合体破坏行为及强度特征[J].煤炭学报,2016,41(11):2706-2713.
ZUO Jianping,CHEN Yan,ZHANG Junwen,et al.Failure behavior and strength characteristics of coal-rock combined body under different confining pressures[J].Journal of China Coal Society,2016,41(11):2706-2713.
[6] 韩铁林,师俊平,陈蕴生,等.轴、侧向同卸荷下砂岩力学特性影响的试验研究[J].力学学报,2016,48(3):936-943.
HAN Tielin,SHI Junping,CHEN Yunsheng,et al.Experimental study on mechanics characteristics of sandstone under axial unloading and radial unloading path[J].Chinese Journal of Theoretical and Applied Mechanics,2016,48(3):936-943.
[7] 刘泉声,魏莱,雷广峰,等.砂岩裂纹起裂损伤强度及脆性参数演化试验研究[J].岩土工程学报,2018,40(10):1782-1789.
LIU Quansheng,WEI Lai,LEI Guangfeng,et al.Experimental study on damage strength of crack initiation and evaluation of brittle parameters of sandstone[J].Chinese Journal of Geotechnical Engineering,2018,40(10):1782-1789.
[8] 程立朝,许江,冯丹,等.岩石剪切破坏裂纹演化特征量化分析[J].岩石力学与工程学报,2015,34(1):31-39.
CHENG Lizhao,XU Jiang,FENG Dan,et al.Quantitative analysis on development of surface cracks of rocks upon shear failure[J].Chinese Journal of Rock Mechanics and Engineering,2015,34(1):31-39.
[9] 赵星光,马利科,苏锐,等.北山深部花岗岩在压缩条件下的破裂演化与强度特性[J].岩石力学与工程学报,2014,33(S2):3665-3675.
ZHAO Xingguang,MA Like,SU Rui,et al.Fracture evolution and strength characteristics of Beishan deep Granite under compression conditions[J].Chinese Journal of Rock Mechanics and Engineering,2014,33(S2):3665-3675.
[10] 傅晏,袁文,刘新荣,等.酸性干湿循环作用下砂岩强度参数劣化规律[J].岩土力学,2018,39(9):3331-3339.
FU Yan,YUAN Wen,LIU Xinrong,et al.Deterioration rules of strength parameters of sandstone under cyclical wetting and drying in acid-based environment[J].Rock and Soil Mechanics,2018,39(9):3331-3339.
[11] 邓华锋,王晨玺杰,李建林,等.加载速率对砂岩抗拉强度的影响机制[J].岩土力学,2018,39(S1):79-88.
DENG Huafeng,WANG Chenxijie,LI Jianlin,et al.Influence mechanism of loading rate on tensile strength of sandstone[J].Rock and Soil Mechanics,2018,39(S1):79-88.
[12] 范鹏贤,李颖,赵跃堂,等.红砂岩卸载破坏强度特征试验研究[J].岩石力学与工程学报,2018,37(4):852-861.
FAN Pengxian,LI Ying,ZHAO Yuetang,et al.Experimental study on unloading failure strength of red sandstone[J].Chinese Journal of Rock Mechanics and Engineering,2018,37(4):852-861.
[13] SU Haijian,JING Hongwen,DU Mingrui,et al.Experimental investigation on tensile strength and its loading rate effect of sandstone after high temperature treatment[J].Arabian Journal of Geosciences,2016,9(13):1-7.
[14] 邓华锋,原先凡,李建林,等.饱水度对砂岩纵波波速及强度影响的试验研究[J].岩石力学与工程学报,2013,32(8):1625-1631.
DENG Huafeng,YUAN Xianfan,LI Jianlin,et al.Experimental research on influence of saturation degree on sandstone longitudinal wave velocity and strength[J].Chinese Journal of Rock Mechanics and Engineering,2013,32(8):1625-1631.
[15] YUAN Ruifu,SHI Bowen.Acoustic emission activity in directly te-nsile test on marble specimens and its tensile damage constitutive model[J].International Journal of Coal Science & Technology,2018,5(3):295-304.
[16] LI Huigui,LI Huamin.Mechanical properties and acoustic emission characteristics of thick hard roof sandstone in Shendong coal field[J].International Journal of Coal Science & Technology,2017,4(2):147-158.
[17] 胡昕,洪宝宁,王伟,等.红砂岩强度特性的微结构试验研究[J].岩石力学与工程学报,2007,26(10):2141-2147.
HU Xin,HONG Baoning,WANG Wei,et al.Experimental study on microstructure of strength property of red sandstone[J].Chinese Journal of Rock Mechanics and Engineering,2007,26(10):2141-2147.
[18] YOU Mingqing.True triaxial strength criteria for rock[J].International Journal of Rock Mechanics and Mining Sciences,2009,46(1):115-127.
[19] THOMAS Benz,RADU Schwab,REGINA A.Kauther,et al.A Hoek-Brown criterion with intrinsic material strength factorization[J].International Journal of Rock Mechanics and Mining Sciences,2008,45(2):210-222.
[20] MAHENDRA Singh,BHAWANI Singh.Modified Mohr-Coulomb cr-iterion for non-linear triaxial and polyaxial strength of jointed rocks[J].International Journal of Rock Mechanics and Mining Sciences,2012,51:43-52.
[21] MAHENDRA Singh,ANIL Raj,BHAWANI Singh.Modified Mohr-Coulomb criterion for non-linear triaxial and polyaxial strength of intact rocks[J].International Journal of Rock Mechanics and Mining Sciences,2011,48(4):546-555.
[22] SRIAPAI Tanapol,WALSRI Chaowarin,FUENKAJORN Kittitep.True-triaxial compressive strength of Maha Sarakham salt[J].International Journal of Rock Mechanics and Mining Sciences,2013,61:256-265.
[23] THOMAS Benz,RADU Schwab.A quantitative comparison of six rock failure criteria[J].International Journal of Rock Mechanics and Mining Sciences,2008,45(7):1176-1186.
[24] COLMENARES L B,ZOBACK M D.A statistical evaluation of intact rock failure criteria constrained by polyaxial test data for five different rocks[J].International Journal of Rock Mechanics and Mining Sciences,2002,39(6):695-729.
[25] RAFIAI Hosein.New empirical polyaxial criterion for rock strength[J].International Journal of Rock Mechanics and Mining Sciences,2011,48(6):922-931.
[26] RUKHAIYAR S,SAMADHIYA K.A polyaxial strength model for intact sandstone based on Artificial Neural Network[J].International Journal of Rock Mechanics and Mining Sciences,2017,95:26-47.