页岩甲烷高压等温吸附模型评价与改进

董银涛1,2,3,4,鞠斌山1,2,刘楠楠1,2,3

(1.中国地质大学(北京) 能源学院,北京 100083; 2.非常规天然气地质评价与开发工程北京市重点实验室,北京 100083; 3.中国地质大学(北京) 煤层气开发利用国家工程研究中心煤储层物性实验室,北京 100083; 4.中海油研究总院,北京 100028)

摘 要:为确定合理的页岩甲烷高压等温吸附模型,以准确拟合实测过剩吸附量曲线,并计算其绝对吸附量曲线。选取常用的8种吸附公式及3种吸附相密度计算方法,分别组成高压等温吸附模型,并以过剩吸附量的拟合度R2、绝对吸附量校正的合理性、吸附相密度计算的合理性以及吸附理论选择的合理性为考核指标,分别采用333与363 K温度条件下共18组实测值对其进行定量评价。推导了吸附相密度关于压力与温度的函数,并组合使用Langmuir-Freundlich与Dubinin-Radushkevich吸附公式,构建了改进的高压等温吸附模型。结果表明:在3种吸附相密度计算方法中,拟合吸附相密度法最佳,该方法结合Langmuir-Freundlich或Dubinin-Radushkevich吸附公式构成的吸附模型最准确,其拟合过剩吸附量的R2平均值分别为0.998 3和0.997 8;给定吸附相密度法构成的吸附模型对过剩吸附量的拟合度较低;而过剩吸附量与气体密度曲线计算吸附相密度法的准确性较差。改进模型对18组实测过剩吸附量的拟合度R2平均值为0.996 9;计算绝对吸附量的偏差为0.087,优于现有模型;且其具有物理基础,符合页岩甲烷吸附机理。

关键词:页岩气;高压;等温吸附;过剩吸附;吸附模型

页岩气是以吸附或游离状态为主要存在方式的天然气聚集,其中吸附气占总气量的20%~85%[1-2]。因此,建立客观、准确的页岩甲烷吸附数学模型,对页岩气储量评估及开发方案制定具有重要意义[3]

目前,国内外学者对页岩甲烷高压等温吸附已开展大量实验研究,结果均表明,页岩的甲烷等温吸附曲线在高压段存在下降现象[4]。其原因为:实验测得的吸附量为过剩吸附量,而非甲烷的实际吸附量为绝对吸附量。根据定义,绝对吸附量为吸附相的总量,而过剩吸附量为吸附相密度超出气相密度的过剩量。因此,随压力增高,气相密度增大,吸附相与气相的密度差减小,使得过剩量下降,导致过剩吸附量出现下降现象[4]。因此,真实的绝对吸附量应由吸附相及气相密度校正过剩吸附量后得到。对于绝对吸附量的计算方法,国内外学者也已开展大量研究,多为现有吸附理论公式,与不同的吸附相密度计算方法组合而成。在吸附公式的选择方面,CHENG等[5]、周尚文等[6]、DO等[7]、俞凌杰等[8]、方帆等[9]、高永利等[10]、朱汉卿等[11]采用Langmuir及其改进方程;熊健等[12]、刘圣鑫等[13]、TIAN等[14]、YANG等[15]应用了Dubinin-Radushkevich(DR)公式及其改进方法;SAKUROVS等[16]、盛茂等[17]、TANG等[18]、SONG等[19]、李英杰等[20]选用两种吸附理论结合的方法。在吸附相密度计算方面,前人主要采用3种方法,分别为:① 吸附相密度依据经验取定值[9,12,20],例如常压沸点液体甲烷密度423 kg/m3或Van der Waals密度373 kg/m3[6,21];② 作实测过剩吸附量与气体密度的曲线,取其高压下降段与横坐标轴交点作为吸附相密度[6,10];③ 将吸附相密度作为拟合参数之一,由吸附模型拟合过剩吸附量后得到[8,11,13]。经以上各方法组合而成的页岩甲烷高压等温吸附模型,均能在一定条件下取得较好的拟合结果,但尚未见各吸附模型经不同温度压力条件下相同样品的对比检验,即各模型的合理性及准确性尚无定量对比评价。同时,吸附相密度应为压力与温度的函数[21-22],而现有方法均将其作为定值,这与实际物理情况不符。

针对以上问题,笔者对比了常用页岩甲烷高压等温吸附模型,通过其对过剩吸附量的拟合以及绝对吸附量的校正,定量评价其合理性及准确性,并给出最优的吸附公式与吸附相密度计算方法的组合。同时,推导了吸附相密度关于压力与温度的函数,并结合适宜的吸附理论,给出改进的页岩甲烷高压等温吸附模型。

1 现有模型评价

现有高压等温吸附模型均依据式(1)[23],分别选取适宜的吸附公式、气体密度及吸附相密度计算方法构成等式右侧,并由实测值确定左侧的过剩吸附量,通过拟合过剩吸附量曲线,获取吸附公式中的相关参数,进而利用所得参数由吸附公式计算绝对吸附量。

(1)

式中,mex为过剩吸附量,mmol/g;mabs为绝对吸附量,mmol/g;ρg为气相密度,kg/m3;ρa为吸附相密度,kg/m3

笔者依据式(1),选择目前常用的8种吸附公式及3种吸附相密度计算方法,构成24种吸附模型,并选用333及363 K温度条件下各9个页岩样品的甲烷高压等温吸附曲线对其进行对比评价。吸附模型的评价选用以下4个考核指标:过剩吸附量的拟合度R2、绝对吸附量校正的合理性、吸附相密度计算的合理性以及吸附理论选择的合理性。

1.1 吸附模型

依据式(1)建立吸附模型,计算绝对吸附量mabs的8种吸附公式,见表1。吸附相密度ρa计算选用的3种方法如上文所述,需说明:本文吸附相密度取定值时,选取Van der Waals密度373 kg/m3;作实测过剩吸附量与气体密度的曲线(mex-ρg)时,取过剩吸附量曲线压力高于15 MPa的下降段[6];吸附相密度作为拟合参数时,其上下限分别定为162 kg/m3与423 kg/m3[6,9,24]。笔者采用对超临界甲烷最为准确的Setzmann-Wagner状态方程计算气体密度ρg[25-26]

表1 8种形式的吸附公式及其适用范围

Table 1 8 adsorption formulas and their application range

注:(1)*Langmuir及其改进型方程关于压力的一阶导数恒>0,故在整个压力区间上符合绝对吸附量单调递增的规律;

(2)**由式可得,DR方程关于压力的一阶导数在P<Po时,函数递增;而在P>Po后,函数递减,此时不符合绝对吸附量单调递增的规律;

吸附理论公式适用压力范围Langmuir(L)n=nLbP1+bPLangmuir-Freundlich(LF)n=nL(bP)m1+(bP)m无适用压力范围的限制*DR(DRP)n=nLexp-DlnPoP 2 DR-Langmuir(DR-LP)n=nL1exp-DlnPoP 2 +nL2bP1+bPDR-Langmuir-Freundlich(DR-LFP)n=nL1exp-DlnPoP 2 +nL2(bP)m1+(bP)m饱和蒸气压Po用虚拟饱和蒸气压公式替代Po=P(T/Tc)k[27];适用压力范围为P

(3)表中,n为吸附量,mmol/g;nL为最大吸附量,mmol/g;b为吸附系数,Pa-1;P为压力,Pa;m为与吸附剂非均匀性或非均质性相关的参数,取值范围0~1;D为与吸附热有关的系数;Po为饱和蒸气压,Pa;nL1为微孔填充的最大吸附量,mmol/g;nL2为单层吸附的最大吸附量,mmol/g;T为温度,K;Tc为临界温度,K;k为与吸附剂有关的系数。

1.2 实验数据

本文使用重量法实验在333 K和363 K温度条件下,各测得9个页岩样品的高压甲烷等温吸附曲线(图1),作为评价上述各吸附模型合理性与准确性的实测数据。以上实验数据均来自前人已发表的实验成果[6,10-11]

1.3 对比评价

对于吸附公式的选择,由24种吸附模型拟合图1中过剩吸附量曲线及校正所得的绝对吸附量曲线表明,采用DRP,DR-LP或DR-LFP吸附公式,与3种吸附相密度计算方法组合的吸附模型,均可能因吸附公式单调区间的原因,使校正的绝对吸附量曲线在高压下产生下降现象(图2),与真实情况不符,故不推荐使用DRP,DR-LP与DR-LFP公式构成的吸附模型。对于吸附相密度计算方法,由18个样品的过剩吸附量与气体密度曲线计算的吸附相密度表明(图3、表2),由其下降段确定的吸附相密度可能会超出合理值(即423 kg/m3)的上限,与实际情况不符,故不推荐使用该吸附相密度计算方法。进一步对比剩余的L,LF,DRρ,DR-Lρ与DR-LFρ共5种吸附公式,在分别结合给定吸附相密度和拟合吸附相密度的情况下,对过剩吸附量的拟合度,其结果见表3,4。分析可得,5种吸附公式结合给定吸附相密度的方法对过剩吸附量的拟合度均较低,其R2平均值比采用拟合吸附相密度的方法低0.81%~5.66%。

图1 页岩样品重量法高压甲烷等温吸附测试结果

Fig.1 Experimental results of high pressure methane isothermal adsorption with gravimetric method

图2 过剩吸附量拟合及绝对吸附量校正曲线

Fig.2 Fitting curves of excess adsorbance and correction curves of absolute adsorbance

图3 过剩吸附量与气体密度曲线

Fig.3 Curves of excess adsorbance vs gas density

表2 过剩吸附量与气体密度曲线计算的吸附相密度

Table 2 Adsorption phase density calculated by excess adsorbance vs gas density curve

温度/K样品编号吸附相密度/(kg·m-3)温度/K样品编号吸附相密度/(kg·m-3)L1301.68H1332.76L2355.77H2452.05L3378.90H3293.80L4474.20H4413.74333L5212.66363H5403.50L6859.32H6313.58L71 033.45H7450.23L8510.33H8257.63L91 076.34H9194.36

因此,目前常用的吸附相密度计算方法中,给定吸附相密度方法对过剩吸附量的拟合度较低;过剩吸附量与气体密度曲线计算吸附相密度方法的准确性较差;而拟合吸附相密度结合吸附公式的吸附模型对过剩吸附量的拟合度最高,且计算的吸附相密度与校正的绝对吸附量均较为合理(图4),故推荐使用。所以,L,LF,DRρ,DR-Lρ或DR-LFρ吸附公式,结合拟合吸附相密度的吸附模型,是目前较为准确的页岩甲烷高压等温吸附模型。

进一步对比分析L,LF,DRρ,DR-Lρ与DR-LFρ吸附公式,结合拟合吸附相密度方法的吸附模型。通过统计各模型对18个样品的过剩吸附量拟合度R2(图5)可知,其R2平均值分别为0.995 7,0.998 3,0.997 8,0.993 1及0.997 0,采用LF或DRρ吸附公式的吸附模型其R2分布最为集中,且平均值与中位数均较高,故其在目前常用页岩甲烷高压等温吸附模型中,具有最高的稳定性与准确性。

表3 给定吸附相密度方法对过剩吸附量拟合度的对比

Table 3 Comparison of fitting degree for excess adsorbance by given adsorption phase density method

温度/K方法样品编号L1L2L3L4L5L6L7L8L9R2平均值L0.982 30.991 80.996 20.983 00.939 70.996 90.994 90.999 20.996 30.986 7LF0.982 80.994 30.996 20.999 30.948 20.996 90.998 30.999 20.999 30.990 5333DRρ0.964 60.988 00.982 00.998 70.899 70.996 30.998 40.998 30.999 10.980 6DR-Lρ0.964 60.988 00.982 00.998 60.899 80.996 60.998 40.998 90.999 10.980 7DR-LFρ0.960 50.987 70.980 70.998 60.897 80.995 30.998 30.997 80.998 80.979 5温度/K方法样品编号H1H2H3H4H5H6H7H8H9R2平均值L0.983 10.994 50.972 00.989 80.994 80.973 10.976 30.935 90.758 90.953 2LF0.990 30.994 90.983 90.997 80.994 90.985 40.986 50.961 10.837 90.970 3363DRρ0.973 30.995 90.957 70.985 20.994 00.960 50.975 60.921 90.715 80.942 2DR-Lρ0.982 70.995 80.971 20.989 80.994 00.973 10.975 60.934 30.715 80.948 0DR-LFρ0.973 20.995 70.957 30.985 20.992 30.959 40.972 80.916 60.713 20.940 6

表4 拟合吸附相密度方法对过剩吸附量拟合度的对比

Table 4 Comparison of fitting degree for excess adsorbance by fitting adsorption phase density method

温度/K方法样品编号L1L2L3L4L5L6L7L8L9R2平均值L0.993 80.991 80.997 10.988 30.990 90.997 40.996 30.999 30.998 20.994 8LF0.999 20.999 70.998 30.999 70.999 00.998 20.998 60.999 80.998 90.999 0333DRρ0.999 10.998 70.997 00.998 90.996 80.998 00.998 40.999 80.999 10.998 4DR-Lρ0.998 80.998 70.996 50.998 90.996 00.997 90.997 90.999 50.994 10.997 6DR-LFρ0.999 40.999 20.997 00.999 00.984 60.998 10.997 70.999 80.998 70.997 1本文模型0.996 60.997 30.995 10.997 90.998 40.998 20.996 90.999 70.996 50.997 4

续 表

温度/K方法样品编号H1H2H3H4H5H6H7H8H9R2平均值L0.999 30.994 90.999 70.998 10.997 80.999 30.985 60.998 30.996 40.996 6LF0.999 40.997 80.999 70.999 10.999 70.999 30.987 40.998 30.998 20.997 7363DRρ0.999 50.996 50.999 70.998 30.998 40.999 40.987 00.996 90.998 30.997 1DR-Lρ0.999 50.997 90.998 90.997 40.999 60.999 40.986 60.996 70.921 30.988 6DR-LFρ0.999 60.997 60.999 70.997 60.998 80.995 90.986 70.998 40.998 90.997 0本文模型0.999 10.997 20.996 30.997 20.998 60.998 40.986 50.994 90.998 80.996 3

图4 5种吸附模型的过剩吸附量拟合曲线及绝对吸附量校正曲线

Fig.4 Fitting curves of excess adsorbance and correction curves of absolute adsorbance for 5 adsorption models

图5 吸附模型的过剩吸附量拟合度分布

Fig.5 Distribution diagram of the excess adsorbance fitting degree of the adsorption model

2 改进吸附模型

尽管采用LF或DRρ吸附公式的吸附模型已有较高的稳定性与准确性,但Langmuir及其改进方程所描述吸附机理为表面单层吸附[28],DR方程描述机理为微孔填充[28-29],而页岩的甲烷吸附为表面单层吸附与微孔填充并存[17,30-31],故Langmuir型方程与DR方程应联合使用方能表征页岩甲烷吸附机理[13,20]。同时,吸附相密度不是定值,其应为压力与温度的函数[21-22]。因此,笔者进一步研究了吸附相密度函数,并将其与吸附公式结合,给出了改进的页岩甲烷高压等温吸附模型。

2.1 吸附公式选择

依据上文分析,笔者联合使用Langmuir型方程与DR方程组成吸附公式。其中Langmuir型方程选择Langmuir-Freundlich公式,因其指数m表征非均匀的表面吸附[6,11],可体现页岩甲烷吸附的非均质性,更符合其吸附机理;对于DR方程,因其压力比仅为拟合参数[7],且用密度比替换压力比可将其推广至超临界条件[16],故本文选择采用密度比的DR方程。两种吸附理论组成形如表1中DR-LFρ的吸附公式,作为绝对吸附量的表达式。

2.2 吸附相密度函数

笔者对吸附相密度函数作以下假设:① 不考虑吸附剂内部结构差异,吸附相的密度为其均值;② 一定条件下,吸附相密度的上限值为定值;③ 吸附剂单位面积上吸附相的体积与已吸附的分子数呈正比;④ 不考虑吸附相中吸附质分子的排列形式。

根据以上假设条件作如下推导:

根据分子运动理论,在密闭容器中,每秒碰撞到1 cm2表面上气体物质的量为

(2)

式中,μ为每秒碰撞到1 cm2表面上的气体物质的量,mol/(cm2·s);M为相对分子质量,g/mol;R为气体常数,J/(mol·K);T为温度,K。

碰撞吸附比例为αα一般接近1[28];吸附速度vaμα呈正比,即vaαμ;同时,令1 cm2表面上剩余可吸附体积占最大吸附体积的体积分数为θo,则吸附速度与θo呈正比,即vaθo;同理,脱附速度vd与已吸附体积的体积分数呈正比,1 cm2表面上已吸附体积占最大吸附体积的体积分数用θ表示,则vdθ;在吸附动态平衡时va=vd,即

(3)

式中,c为比例系数。

又因θo+θ=1,得

(4)

因已吸附体积占最大吸附体积的体积分数即为该阶段吸附相密度与最大吸附相密度之比,可得

(5)

式中,ρa-max为最大吸附相密度,kg/m3

α取1,并将式(2)代入式(5),即可得到吸附相密度关于压力与温度的函数:

(6)

2.3 模型计算方法

本文改进的吸附模型依据式(1)完成过剩吸附量的拟合与绝对吸附量的校正,具体计算步骤:

(1)采用Setzmann-Wagner状态方程计算甲烷的压力与密度关系曲线。

(2)将DR-LFρ吸附公式及式(6)代入式(1),得式(7)所示的吸附模型。本文为获取较好的过剩吸附量拟合度,令式(7)中c值取5,并对部分选用关于压力的四次多项式拟合,其既可保证较高拟合精度,又便于后续计算,而最大吸附相密度ρa-max作为拟合参数,故该项又可写为式(8)。

(7)

(8)

式中,a1,a2,a3,a4,a5为多项式系数。

(3)由式(8)替换式(7)中的ρg(104×项,得式(9),以拟合实测过剩吸附量曲线,得到吸附公式的各项拟合参数及最大吸附相密度。

(9)

(4)最后,将拟合所得参数代入DR-LFρ吸附公式,计算绝对吸附量曲线。

3 模型验证

运用本文模型拟合1.2节中18个页岩样品的甲烷高压等温吸附曲线(图6(a),(c)),并计算绝对吸附量曲线(图6(b),(d))。将其结果与采用L,LF,DRρ,DR-Lρ与DR-LFρ公式的吸附模型拟合结果进行对比(图5、表4)可得,本文模型的R2平均值0.996 9,R2分布范围较L,DR-Lρ及DR-Lρ吸附模型小,接近LF与DRρ吸附模型,故本文模型在符合页岩甲烷吸附机理的同时保持了较好的稳定性与准确性。

图6 本文模型的过剩吸附量拟合与绝对吸附量校正曲线

Fig.6 Fitting curves of excess adsorbance and correction curves of absolute adsorbance for this paper’s model

由于页岩甲烷高压等温吸附模型计算所得绝对吸附量的准确性尚无实验方法验证[4],因此本文采用各模型相互对比的方法评价其合理性与稳定性。即选定吸附模型,对18个页岩样品分别计算其最大吸附量,并由式(10)分别计算各样品最大吸附量与其中位数(表5)的偏差,进而求取该吸附模型的平均偏差。对比各模型的平均偏差(图7),其值越小则认为该模型较其余模型越稳定,其计算的绝对吸附量越合理。

(10)

式中,M(nL)为最大吸附量的中位数,mmol/g;δ为最大吸附量较中位数偏差。

对采用L,LF,DRρ,DR-Lρ,DR-LFρ公式的吸附模型及本文吸附模型,计算其偏差(图7),其值分别为0.158,0.172,0.161,0.215,0.100以及0.087。可知DR-Lρ吸附模型偏差最大,而本文模型偏差最小。故本文模型具有良好的稳定性,其校正的绝对吸附量具有较好的合理性。

表5 各吸附模型计算的最大吸附量及其中位数

Table 5 Maximum adsorbance calculated by adsorption models and their median

编号最大吸附量/(mmol·g-1)LLFDRρDR-LρDR-LFρ本文模型中位数L10.091 30.116 50.090 70.094 20.113 20.107 70.100 9L20.130 40.216 10.141 50.151 60.183 90.166 70.159 2L30.153 40.171 80.159 00.271 80.159 90.171 50.165 7L40.163 30.240 80.177 60.183 00.314 40.260 50.211 9L50.077 50.118 30.073 00.078 50.079 40.092 10.078 9L60.098 30.128 20.084 40.097 20.106 40.107 10.102 3L70.096 50.136 40.097 00.266 20.145 50.129 70.133 0L80.135 60.167 70.126 70.160 50.158 70.160 90.159 6L90.147 80.234 40.151 90.346 50.270 10.208 00.221 2H10.125 90.133 00.105 30.114 20.142 40.107 60.120 1H20.122 60.196 80.108 00.192 80.182 60.148 40.165 5H30.141 30.147 60.116 10.113 70.126 70.113 80.121 4H40.216 50.182 50.176 20.304 40.227 10.206 50.211 5H50.146 20.207 60.124 40.171 00.146 70.172 00.158 8H60.148 80.150 10.119 60.121 20.124 30.119 60.122 8H70.111 60.089 10.082 90.095 10.102 60.105 10.098 8H80.081 30.079 80.054 80.054 10.069 70.062 00.065 8H90.080 70.064 40.049 90.041 40.059 90.084 60.062 2

图7 各模型最大吸附量的平均偏差

Fig.7 Mean deviation for the maximum adsorbance of each model

因此,本文采用吸附相密度函数结合DR-LFρ吸附公式构成的页岩甲烷高压等温吸附模型,可以较准确地拟合页岩甲烷高压等温吸附曲线,其校正的绝对吸附量具有合理性与稳定性,且较现有模型更符合页岩甲烷吸附机理,具有良好的物理基础。

4 结 论

(1)目前常用的吸附相密度计算方法中,推荐使用拟合吸附相密度的方法,其结合吸附公式构成的吸附模型对过剩吸附量的拟合效果最好,且计算的吸附相密度与校正的绝对吸附量均较为合理。给定吸附相密度方法的过剩吸附量拟合度较低;过剩吸附量与气体密度曲线计算吸附相密度方法的准确性较差,不推荐使用。

(2)L,LF,DRρ,DR-Lρ,DR-LFρ吸附公式,结合拟合吸附相密度的方法,是较为准确的页岩甲烷高压等温吸附模型。其中采用LF与DRρ吸附公式的吸附模型对页岩甲烷高压等温吸附曲线拟合的R2分布最为集中,且平均值与中位数均较高,具有最高的稳定性与准确性。

(3)本文推导的吸附相密度关于压力与温度的函数,具有良好的物理基础;其结合DR-LFρ吸附公式,可以较好地拟合页岩甲烷高压等温吸附曲线,校正的绝对吸附量偏差最小且具有合理性,较现有模型能更好地表征页岩甲烷吸附机理。

参考文献(References):

[1] 张金川,金之钧,袁明生.页岩气成藏机理和分布[J].天然气工业,2004,24(7):15-18,132.

ZHANG Jinchuan,JIN Zhijun,YUAN Mingsheng.Reservoiring mechanism of shale gas and its distribution[J].Natural Gas Industry,2004,24(7):15-18,132.

[2] 姚艳斌,刘大锰.基于核磁共振弛豫谱技术的页岩储层物性与流体特征研究[J].煤炭学报,2018,43(1):181-189.

YAO Yanbin,LIU Dameng.Petrophysical properties and fluids transportation in gas shale:A NMR relaxation spectrum analysis method[J].Journal of China Coal Society,2018,43(1):181-189.

[3] 郭怀志,潘保芝,张丽华,等.页岩吸附模型及吸附气含气量计算方法进展[J].地球物理学进展,2016,31(3):1080-1087.

GUO Huaizhi,PAN Baozhi,ZHANG Lihua,et al.Progress in adsorption model and calculation method of absorbed gas content of shale[J].Progress in Geophysics,2016,31(3):1080-1087.

[4] 周尚文,李奇,薛华庆,等.页岩容量法和重量法等温吸附实验对比研究[J].化工进展,2017,36(5):1690-1697.

ZHOU Shangwen,LI Qi,XUE Huaqing,et al.Comparative study on the volumetric and gravimetric method for isothermal adsorption experiment of shale[J].Chemical Industry and Engineering Progress,2017,36(5):1690-1697.

[5] CHENG Yuanping,JIANG Haina,ZHANG Xiaolei,et al.Effects of coal rank on physicochemical properties of coal and on methane adsorption[J].International Journal of Coal Science & Technology,2017,4(2):129-146.

[6] 周尚文,王红岩,薛华庆,等.页岩过剩吸附量与绝对吸附量的差异及页岩气储量计算新方法[J].天然气工业,2016,36(11):12-20.

ZHOU Shangwen,WANG Hongyan,XUE Huaqing,et al.Difference between excess and absolute adsorption capacity of shale and a new shale gas reserve calculation method[J].Natural Gas Industry,2016,36(11):12-20.

[7] DO D D,DO H D.Adsorption of supercritical fluids in non-porous and porous carbons:Analysis of adsorbed phase volume and density[J].Carbon,2003,41(9):1777-1791.

[8] 俞凌杰,范明,陈红宇,等.富有机质页岩高温高压重量法等温吸附实验[J].石油学报,2015,36(5):557-563.

YU Lingjie,FAN Ming,CHEN Hongyu,et al.Isothermal adsorption experiment of organic-rich shale under high temperature and pressure using gravimentric method[J].Acta Petrolei Sinica,2015,36(5):557-563.

[9] 方帆,孙冲,舒向伟,等.页岩中甲烷等温吸附量计算问题及方法改进[J].石油实验地质,2018,40(1):71-77,89.

FANG Fan,SUN Chong,SHU Xiangwei,et al.Problems of methane isothermal adsorption calculation in shale and method improvement[J].Petroleum Geology & Experiment,2018,40(1):71-77,89.

[10] 高永利,李腾,关新,等.基于重量法的页岩气高压等温吸附研究[J].石油实验地质,2018,40(4):566-572.

GAO Yongli,LI Teng,GUAN Xin,et al.Mass method adsorption characteristics of shale gas under high pressure[J].Petroleum Geology & Experiment,2018,40(4):566-572.

[11] 朱汉卿,贾爱林,位云生,等.蜀南地区富有机质页岩孔隙结构及超临界甲烷吸附能力[J].石油学报,2018,39(4):391-401.

ZHU Hanqing,JIA Ailin,WEI Yunsheng,et al.Pore structure and supercritical methane sorption capacity of organic-rich shale in southern Sichuan Basin[J].Acta Petrolei Sinica,2018,39(4):391-401.

[12] 熊健,刘向君,梁利喜,等.页岩气超临界吸附的Dubibin-Astakhov改进模型[J].石油学报,2015,36(7):849-857.

XIONG Jian,LIU Xiangjun,LIANG Lixi,et al.Improved Dubibin-Astakhov model for shale-gas supercritical adsorption[J].Acta Petrolei Sinica,2015,36(7):849-857.

[13] 刘圣鑫,钟建华,马寅生,等.页岩中气体的超临界等温吸附研究[J].煤田地质与勘探,2015,43(3):45-50.

LIU Shengxin,ZHONG Jianhua,MA Yinsheng,et al.Super-critical isothermal adsorption of gas in shale[J].Coal Geology & Exploration,2015,43(3):45-50.

[14] TIAN H,LI T,ZHANG T,et al.Characterization of methane adsorption on overmature Lower Silurian-Upper Ordovician shales in Sichuan Basin,southwest China:Experimental results and geological implications[J].International Journal of Coal Geology,2016,156:36-49.

[15] YANG S,WU W,XU J,et al.Modeling of methane/shale excess adsorption under reservoir conditions[J].SPE Reservoir Evaluation & Engineering,2018,21(4):1027-1034.

[16] SAKUROVS R,DAY S,WEIR S,et al.Application of a modified Dubinin-Radushkevich equation to adsorption of gases by coals under supercritical conditions[J].Energy & Fuels,2007,21(2):992-997.

[17] 盛茂,李根生,陈立强,等.页岩气超临界吸附机理分析及等温吸附模型的建立[J].煤炭学报,2014,39(S1):179-183.

SHENG Mao,LI Gensheng,CHEN Liqiang,et al.Mechanisms analysis of shale-gas supercritical adsorption and modeling of isorption adsorption[J].Journal of China Coal Society,2014,39(S1):179-183.

[18] TANG X,RIPEPI N,LUXBACHER K,et al.Adsorption models for methane in shales:Review,comparison and application[J].Energy & Fuels,2017,7b01948.

[19] SONG X,LU X,SHEN Y,et al.A modified supercritical Dubinin-Radushkevich model for the accurate estimation of high pressure methane adsorption on shales[J].International Journal of Coal Geology,2018,193:1-15.

[20] 李英杰,左建平,姚茂宏,等.页岩气超临界等温吸附模型及储量计算优化[J].中国矿业大学学报,2019,48(2):322-332.

LI Yingjie,ZUO Jianping,YAO Maohong,et al.Improved shale gas supercritical isothermal adsorption model and the calculation method of geologic reserve[J].Journal of China University of Mining & Technology,2019,48(2):322-332.

[21] 端祥刚,胡志明,高树生,等.页岩高压等温吸附曲线及气井生产动态特征实验[J].石油勘探与开发,2018,45(1):119-127.

DUAN Xianggang,HU Zhiming,GAO Shusheng,et al.Shale high pressure isothermal adsorption curve and the production dynamic experiments of gas well[J].Petroleum Exploration and Development,2018,45(1):119-127.

[22] LIU Y,LI H,TIAN Y,et al.Determination of the absolute adsorption/desorption isotherms of CH4 and n-C4H10 on shale from a nano-scale perspective[J].Fuel,2018,218:67-77.

[23] LI T,TIAN H,XIAO X,et al.Geochemical characterization and methane adsorption capacity of overmature organic-rich Lower Cambrian shales in northeast Guizhou region,southwest China[J].Marine and Petroleum Geology,2017,86:858-873.

[24] 周理,李明,周亚平.超临界甲烷在高表面活性炭上的吸附测量及其理论分析[J].中国科学(B辑),2000,30(1):49-56.

ZHOU Li,LI Ming,ZHOU Yaping.Measurement and theoretical analysis of the adsorption of supercritical methane on super activated carbon[J].Science in China(Series B),2000,30(1):49-56.

[25] 陈花,关富佳,张杰,等.高压下页岩气吸附量计算新方法[J].油气地质与采收率,2019,26(2):87-93.

CHEN Hua,GUAN Fujia,ZHANG Jie,et al.New method for calculating shale gas adsorption amount at high pressure[J].Petroleum Geology and Recovery Efficiency,2019,26(2):87-93.

[26] SETAMANN U,WAGNER W.A New Equation of state and tables of thermodynamic properties for methane covering the range from the melting line to 625 K at Pressures up to 100 MPa[J].Journal of Physical and Chemical Reference Data,1991,20(6):1061.

[27] 熊健,刘向君,梁利喜.页岩中甲烷虚拟饱和蒸汽压的计算方法研究[J].西南石油大学学报(自然科学版),2015,37(4):90-100.

XIONG Jian,LIU Xiangjun,LIANG Lixi.Study on the pseudo-saturation vapor pressure of the methane shales[J].Journal of Southwest Petroleum University(Science & Technology Edition),2015,37(4):90-100.

[28] 近藤精一,石川达雄,安部郁夫.吸附科学[M].北京:化学工业出版社,2006.

[29] DUBININ M M.The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces[J].Chemical Reviews,1960,60:235-241.

[30] 卢双舫,沈博健,许晨曦,等.利用GCMC分子模拟技术研究页岩气的吸附行为和机理[J].地球科学,2018,43(5):1783-1791.

LU Shuangfang,SHEN Bojian,XU Chenxi,et al.Study on adsorption behavior and mechanism of shale gas by using GCMC molecular simulation[J].Earth Science,2018,43(5):1783-1791.

[31] DONG Y,JU B,ZHANG S,et al.Microscopic mechanism of methane adsorption in shale:Experimental data analysis and interaction potential simulation[J].Journal of Petroleum Science and Engineering,2020,184,106544.

Evaluation and improvement of high-pressure isothermal adsorption model for methane in shale

DONG Yintao1,2,3,4,JU Binshan1,2,LIU Nannan1,2,3

(1.School of Energy Resources,China University of Geosciences(Beijing),Beijing 100083,China; 2.Beijing Key Laboratory of Unconventional Natural Gas Geological Evaluation and Development Engineering,Beijing 100083,China; 3.Coal Reservoir Laboratory of National Engineering Research Center of CBM Development & Utilization,China University of Geosciences(Beijing),Beijing 100083,China; 4.CNOOC Research Institute,Beijing 100028,China)

Abstract:This study aims to fit experimental excess adsorbance and calculate absolute adsorbance accurately by determining the reasonable high-pressure isothermal adsorption model for methane in shale.Eight adsorption formulations and three adsorption phase density calculation methods were chosen for setting up the high-pressure isothermal adsorption model.The goodness of fitting (R2) for excess adsorbance,the rationality of absolute adsorbance correction,the rationality of adsorption phase density calculation,and the rationality of the choice of adsorption theories were chosen as evaluation indexes.Thereafter,a total of 18 sets of experimental data at 333 K and 363 K were used to quantitatively evaluate the models,respectively.Moreover,the function of the adsorption phase’s density related to pressure and temperature was derived,and the adsorption formulas of Langmuir-Freundlich and Dubinin-Radushkevich were combined.Then,an improved high-pressure isothermal adsorption model of methane in shale was proposed.The results show that the fitting density method of the adsorption phase is the best method among the three calculation methods of adsorption phase density.Combining this method with Langmuir-Freundlich or Dubinin-Radushkevich adsorption formulas,the currently most accurate high-pressure isothermal adsorption models can be obtained,which the R2 to the excess adsorbance are 0.998 3 and 0.997 8,respectively.However,the adsorption model composed by the given adsorption phase density method has a low R2 to the excess adsorbance.The accuracy of the method for calculating the adsorption phase density based on the relation of excess adsorbance and gas density is poor.Furthermore,the average R2 of the 18 groups’excess adsorbance fitted by the improved model in this paper is 0.996 9.Its calculated deviation of the absolute adsorbance is 0.087,which is better than the existing model.Thus,the improved model in this paper has a physical basis and is consistent with the adsorption mechanism of methane in shale,which can provide the theoretical basis for the reserve estimation and exploitation plan formulation of shale gas.

Key words:shale gas;high pressure;isothermal adsorption;excess adsorption;adsorption model

中图分类号:P618.13

文献标志码:A

文章编号:0253-9993(2020)09-3208-11

移动阅读

董银涛,鞠斌山,刘楠楠.页岩甲烷高压等温吸附模型评价与改进[J].煤炭学报,2020,45(9):3208-3218.

DONG Yintao,JU Binshan,LIU Nannan.Evaluation and improvement of high-pressure isothermal adsorption model for methane in shale[J].Journal of China Coal Society,2020,45(9):3208-3218.

收稿日期:20190617

修回日期:20200218

责任编辑:韩晋平

DOI:10.13225/j.cnki.jccs.2019.0806

基金项目:国家重大科技专项资助项目(2016ZX05011-002,2017ZX05009-005)

作者简介:董银涛(1991—),男,河南南阳人,博士研究生。E-mail:dongyintao@126.com

通讯作者:鞠斌山(1972—),男,山东潍坊人,教授。Tel:010-82322754,E-mail:jubs2936@163.com