煤矿区特有的开采排土工艺使矿区土壤在开采剥离过程中受损严重[1],受重型机械来回不断碾压和自然沉降的影响,地表压实严重[2],土壤结构不良。研究表明[3]经过机械压实后排土场的堆体小颗粒含量增加,导致其孔隙率降低,大孔隙、中孔隙和微孔隙的体积比例发生改变,进而影响土壤的非饱和持水能力[4]。在排土场进行植被复垦时,土壤压实通过影响众多形态学和生理学过程影响植物发育[5],阻碍土壤养分运移,植物利用养分的程度降低[6],导致植株高度、茎直径发育缓慢[7],植物生物量大幅下降[8]。因此,土壤压实是矿区排土场生态重建须面对的关键问题之一。目前国内外关于矿区土壤压实研究,主要侧重矿区不同复垦方式下土壤压实的时空变异规律及土壤理化特性等方面[9],而对土壤压实后的生态修复问题关注甚少。矿区生态修复方法主要包括物理、化学和微生物修复方法,微生物修复技术利用生态系统生物自然演替规律,引入适生微生物帮助植物在逆境下的生长发育,具有环境无害性、安全性和可持续性[10]。
丛枝菌根真菌(AMF)能够调节根系形态发育[11],AMF菌丝纤细、分枝能力强[12],在养分贫瘠的土壤中能增强宿主植物吸收养分能力,改善植株营养水平,提高植物抗逆性,具有促进植物生长的作用[13-14]。徐孟等[15]研究发现AMF能提高城市压实土壤环境下植物抗氧化酶活性,并影响渗透调节物质的分泌,有效增强植物的抗土壤压实能力;AMF与植物组合能改善土壤理化性质、根际微生物群落,改良压实土壤[16]。本文在此研究背景下,通过室内模拟矿区不同土壤压实程度,比较接种AMF对不同压实土壤中植物根系构型、内源激素分泌的影响,揭示菌根真菌调控压实土壤中根系生长的生理机制;通过分析接菌对压实土壤植物地上部分养分含量的影响,进一步探究根系内源激素、构型发育和地上部养分吸收之间的耦合关系。从而探讨AMF对压实土壤中植物生长的作用,为AMF在矿区压实土壤中的规模应用提供理论依据与技术指导。
本次试验的供试菌种为摩西管柄囊霉(Funneliformis mosseae,F.m)来自中国矿业大学(北京)微生物复垦试验室,采用接种剂含AMF孢子、菌丝片段、侵染根段。供试植物为矿区土地复垦种植常用的柠条锦鸡儿(Caragana Korshinskii,Kom),供试土壤为砂黏土,由沙土和黏土以3∶1的比例混合而成,并灭菌(121 ℃,2 h)。土壤背景值pH=7.35,碱解氮为8.58 mg/kg,速效磷为4.77 mg/kg,速效钾为320.66 mg/kg。
试验于2018年6至8月在中国矿业大学(北京)日光温室内进行。选用材质坚硬的PVC管作为试验容器,管内径10.5 cm,高45 cm。根据设置的土壤密度、容器体积及土壤含水量计算出每个处理所需的土壤重量进行装土压实,装土高度为40 cm。采用铁夯自由落体锤击,进行层层压实的方式,每5 cm压实一层,将土壤设置成3个压实梯度,即无压实(简称C0,以下同),轻度压实(C1),重度压实(C2),测算密度分别为1.4 g/cm3(C0),1.5 g/cm3(C1),1.6 g/cm3(C2),采用数显式土壤紧实度仪(英文名称:Field Scout SC 900 Soil Compaction Meter)测量0~30 cm土层的土壤紧实度,不同土壤密度对应的紧实度值如图1所示。每个压实梯度设置接菌(FM)和对照(CK)两种处理,接菌组每千克土施入菌剂量50 g,将菌剂与土壤混合均匀后装盆,对照组加等量灭菌菌剂。共6个处理,每个处理有3次重复,随机排列。挑选新鲜的柠条种子,在35 ℃环境下催芽3 d,每个容器播种5颗成功催芽的种子,待出苗1周后间苗,每个容器内留1株柠条。每周浇水1次,每株300 mL。种植12周后收获。
图1 不同压实程度下土壤紧实度随土层深度变化
Fig.1 Soil compactness varies with soil depth under different degree of compaction
收获的植物地上和地下部分干重采用烘干称重法测定。植物根系形态测定:将植物根系从容器中完整取出,清洗根际土,不人为扰动根系的构型,采用手持三维激光扫描成像仪(型号:Handyscan700)扫描完整的根系,采用美国CI-690 Root Snap根系分析软件测定根系总长度、毛根长度、根系直径、根系表面积、根系体积等;根系内源激素水平IAA,CTK,ABA,GA采用酶联免疫吸附检测法测定[17];植物地上部矿质养分含量测定:采摘各处理柠条的成熟叶片,去离子水清洗后放入烘箱中(约105 ℃)杀青处理15 min,之后在烘箱(70 ℃)中烘至恒重。将烘干的叶片研磨至粉末后,N养分含量采用0.01 mol/L的H+微量滴定测定,P,K,Ca,Mg,Zn,Fe,Mn养分含量用H2SO4-H202消煮,通过ICP-AES(电感耦合等离子发射光谱仪)测定[18]。菌根侵染率采用酸性品红染色法测定,土壤菌丝密度采用微孔滤膜抽滤-网格交叉法测定[19]。
采用Microsoft Excel 2016软件进行数据统计、绘图,用SPSS 20软件进行单因素方差分析(P<0.05),多重比较分析(LSD法),Pearson相关性分析。
如表1所示,不同土壤压实下FM组菌根侵染情况良好,土壤压实对植物菌根侵染的影响不甚显著,C1压实下侵染率相对较高,土壤菌丝密度最高且与C2压实相比差异显著,重度压实下菌丝密度降低。不同压实处理下接菌均不同程度地提高了柠条的株高和地上、地下生物量,C1压实下分别显著提高25.15%,33.72%,36.67%。随压实程度增强,柠条株高和地上、地下生物量呈现先升高后降低的趋势,说明轻度压实可以提高柠条株高和生物量。土壤容重与植物生物量之间呈曲线关系,此现象与前人[20-21]的研究结果一致,原因是轻度的压实能使根系与土壤接触更加紧密,更多养分流入根系,且适度压实能提高土壤持水保肥的能力[22-23]。
表1 不同处理下柠条生长情况的差异
Table 1 Growth of caragana under different treatments
注:同一列不同字母表示 0.05 水平上差异显著,下同。
压实梯度处理侵染率/%菌丝密度/(m·g-1)株高/cm地上部分干重/g地下部分干重/gC0CK0025.50±4.44b0.67±0.13bc0.35±0.04bFM56.7±5.8a7.89±1.01ab26.33±3.51b0.85±0.12b0.26±0.03cC1CK0027.43±2.31b0.86±0.07b0.30±0.03cFM60.0±10.0a8.81±1.36a34.33±4.73a1.15±0.14a0.41±0.04aC2CK0016.93±0.12c0.52±0.09c0.12±0.03eFM53.3±5.8a7.18±1.11b18.10±3.01c0.77±0.12b0.19±0.02d
C2压实处理后对照和接菌柠条株高和生物量均显著降低,说明重度压实显著抑制柠条株高和生物量。重度压实下,接菌柠条的地上和地下部分干重显著高于CK,分别提高48.08%,58.33%,株高提升6.91%,可见接菌减缓了压实对柠条生长发育的抑制,促进其生物量的提升。
从扫描图像中可以看出(图2),与对照相比,接菌柠条根系总体生物量较大,总根长较长,弯曲度大,根系分枝较多,其具体形态指标统计见表2。C1压实后柠条根系形态未受显著影响,C2压实处理后对照和接菌柠条根系形态均呈现退化趋势,但两者退化程度不同。与无压实、未接菌柠条相比,C2压实处理后对照和接菌柠条根系总根长分别减少51.83%,34.82%,根系平均直径分别减少59.57%,29.79%,根系表面积分别减少78.86%,53.53%,根系总体积分别减少78.57%,59.52%,可见重度压实下接菌柠条根系根长、直径、表面积和体积的退化程度均小于对照,即接菌减缓了土壤紧实度增强对根系形态发育的负效应。
图2 不同处理下柠条根系三维激光扫描成像
Fig.2 Three-dimensional laser scanning imaging of the root system of caragana under different treatments
表2 不同处理下柠条根系形态统计
Table 2 Root morphology statistics of caragana under different treatments
注:*表示某一压实度下各根系形态指标的菌根贡献率(%);植物形态生理指标的菌根贡献率是指接菌对某一指标的贡献,表中菌根贡献率的计算公式[26]为:菌根贡献率=(FM组某物质含量-CK组某物质含量)/FM组该物质含量。
压实梯度处理总根长/cm贡献率*/%根系平均直径/mm贡献率/%根系表面积/cm2贡献率/%根系体积/cm3贡献率/%C0CK91.92±14.48a—0.47±0.14a—20.10±3.56ab—0.42±0.11ab—FM96.76±27.75a5.010.39±0.08a-19.6117.36±6.15abc-15.820.33±0.11b-27.03C1CK65.87±17.54ab—0.36±0.15ab—12.16±6.14bc—0.26±0.19bc—FM99.06±39.70a33.50.56±0.18a35.8622.30±4.79a45.460.60±0.19a56.95C2CK44.28±14.81b—0.18±0.04b—4.25 ±1.59d—0.06 ±0.02c—FM59.91±9.88ab26.090.33±0.13ab45.459.34±4.11cd54.500.17±0.11bc64.71
无压实处理下,接菌柠条的平均直径、根系体积和表面积均低于CK,菌根贡献率为负值,这是由于菌根菌丝有代替根毛吸收养分的作用[24],反而使根系生长受到抑制;而C1,C2处理下接菌不同程度地提高了柠条根长、根系直径、根系表面积和体积,接菌柠条的根系发育优于对照,这与WU等[25]研究结果一致,接菌能通过扩大根系与土壤的接触面积,提高根系对土壤中水分和养分的吸收利用效率,从而改善根系形态。与C1相比,C2处理下接菌柠条根系平均直径、表面积和体积的菌根贡献率分别提高9.59%,9.04%,7.76%,接菌对柠条根系生长的贡献在重度压实胁迫下更为突出。
植物激素是一种微量活性有机物质,通过与特定的蛋白质受体结合来调节植物生长发育,是调控根系生长的决定性物质[27]。如图3所示,土壤压实程度对接菌柠条激素分泌的影响显著,随土壤紧实度增强,接菌柠条根系IAA,CTK,GA含量逐渐升高,ABA含量逐渐降低。CK组柠条根系激素含量未受土壤压实程度的显著影响。
图3 不同处理下柠条根系内源激素水平的差异
Fig.3 Difference in root endogenous hormone levels of caragana under different treatments
接菌在不同压实程度下均显著提高了柠条根系IAA,CTK,GA的分泌量,这与前人[28]的研究结果一致,有研究表明[29]接种AMF能通过促进激素IAA,CTK,GA的产生和降低ABA含量提高植物的抗逆性。接菌柠条IAA分泌量在C0,C1,C2压实度下分别比对照提高25.42%,78.65%,93.58%,CTK分别提高28.70%,55.35%,63.86%,GA分别提高29.50%,46.32%,70.59%,激素增加量逐渐升高,可见在一定范围内土壤紧实程度的增加对接菌柠条IAA,CTK,GA的分泌具有促进效应。ABA分泌量则有不同趋势,在C0,C1,C2压实度下接菌柠条ABA分别比对照减少25.42%,78.65%,93.58%,说明在此过程中具有IAA,CTK和GA对ABA的拮抗效应。重度压实(C2)下接菌柠条根系表面积,体积增加是根系促生类激素IAA,CTK和GA增加和ABA降低协同作用的结果。
植物生长的必需元素是细胞结构物质的组成部分,是生命活动的调节者[27]。由表3可知,C0,C1处理下接菌柠条N,P养分含量均高于对照组,C1压实土壤中柠条N,P含量显著高于C0,C2,说明轻度压实有利于提高植物养分吸收量。C2压实下接菌柠条N,P含量显著升高,N含量较CK显著增加49.67%。研究表明[26]接菌能促进N,P养分尤其对P的吸收,本研究结果显示C0压实下接菌柠条比CK磷含量高但不显著,C1,C2压实度下分别显著提高43.55%,26.73%,说明压实环境中接菌能显著发挥促进磷吸收作用,结果与李晓林[30]研究的结果一致,AMF能缓解甚至消除压实土壤中宿主植物的缺磷状况。
在C0,C1,C2压实度下接菌均不同程度地降低了柠条地上部分K,Ca,Mg养分含量,在C1压实度下差异显著。C1压实土壤中接菌柠条Zn含量显著高于CK。C0,C1,C2压实土壤中,接菌组柠条Fe,Mn养分含量均高于对照组,说明接菌对微量元素Fe,Mn的吸收有促进作用,此与郭绍霞等[31]的结果一致。但接菌柠条Fe,Mn含量随压实度增加而降低,说明压实抑制接菌柠条地上部Fe,Mn元素的吸收。
Pearson相关性分析表明,在地上部分各养分含量中,K,Ca,Mg养分含量在0.01水平上极显著正相关;Fe,Mn在0.01水平上极显著正相关,且与Ca,Mg极显著负相关;P与Fe养分在0.05水平上显著正相关。P含量与菌根侵染率、菌丝密度显著正相关,Fe,Mn含量与菌根侵染率、菌丝密度、总根长极显著正相关(P<0.01)。根系激素与地上部养分含量间的相关性分析(表4)表明,根系激素分泌与柠条地上部养分吸收具有密切相关性,根系激素IAA,CTK和GA分泌水平与菌根侵染率、菌丝密度极显著正相关(P<0.01),与N,P,Zn养分含量具有显著正相关性(P<0.05),与K,Ca,Mg养分含量存在负相关性,ABA含量则与N,P极显著负相关,与K含量极显著正相关(P<0.01)。说明接菌促进柠条分泌IAA,CTK和GA,而根部IAA,CTK和GA的分泌促进地上部分N,P,Zn养分吸收。
表3 不同处理下柠条地上部分各养分含量
Table 3 Nutrient concentrations in aboveground parts of caragana under different treatments
压实梯度处理N含量/(mg·g-1)P含量/(mg·g-1)K含量/(mg·g-1)Ca含量/(mg·g-1)Mg含量/(mg·g-1)Zn含量/(μg·g-1)Fe含量/(μg·g-1)Mn含量/(μg·g-1)C0CK2.21±0.30d2.78±0.22bc23.89±0.48a21.67±0.12a6.37±0.04a35.48±3.40ab1 346.25±100.53b84.85±12.60bFM4.03±0.48c3.20±0.23bc23.20±0.16ab18.16±0.92b5.15±0.12b33.20±2.62bc1 839.25±213.55a105.18±8.14aC1CK5.69±1.08abc2.48±0.02c22.21±0.31b20.98±0.25a5.95±0.02a28.30±0.56c717.33 ±16.41c81.07±0.92bFM6.27±1.51ab3.56±0.23ab18.91±0.70c15.76±0.04c4.58±0.06c39.43±1.37a1 806.67±262.25a103.73±4.58aC2CK4.57±1.14bc3.33±1.07b23.67±0.55a20.88±1.84a6.06±0.60a35.23±4.48ab1 122.25±296.94b78.70±8.57bFM6.84±0.73a4.22±0.17a20.81±0.86d20.49 ±1.03a6.04 ±0.22a37.25±3.87ab1 265.00±136.27b82.05±3.27b
表4 地上部分养分含量与侵染率、根系激素分泌水平的相关性分析
Table 4 Pearson correlation analysis of nutrient content of aboveground part with infection rate and hormone secretion level of root system
注:* 在 0.05 水平(双侧)上显著相关;** 在 0.01水平(双侧)上显著相关。
项目NPKCaMgZnFeMn侵染率菌丝密度总根长IAACTKGAABAN1P0.341K-0.694**-0.4051Ca-0.264-0.2120.669**1Mg-0.274-0.1750.647**0.984**1Zn0.2520.287-0.373-0.195-0.0891Fe-0.0930.476*-0.277-0.669**-0.646**0.3861Mn0.140.214-0.407-0.776**-0.804**0.1170.815**1侵染率0.4180.563*-0.637**-0.765**-0.748**0.3850.693**0.664**1菌丝密度0.4020.548*-0.648**-0.775**-0.768**0.3880.714**0.691**0.990**1总根长-0.1660.11-0.125-0.43-0.4330.0430.628**0.573**0.3220.3051IAA0.500*0.618**-0.718**-0.518*-0.4380.595**0.4230.3410.811**0.791**0.1081CTK0.499*0.771**-0.648**-0.419-0.3970.478*0.4520.320.785**0.766**0.2060.844**1GA0.627**0.518*-0.715**-0.525*-0.491*0.475*0.3220.3450.833**0.816**0.0350.855**0.778**1ABA-0.628**-0.689**0.662**0.2370.215-0.426-0.189-0.13-0.691**-0.679**0.101-0.811**-0.836**-0.877**1
矿区土壤压实的本质是重构土壤结构的破坏,压实不同于土壤侵蚀或盐碱化那样在地表留下明显的证据[9],然而压实引起的土壤理化性质改变会对植物生长产生重要影响。本文中使用的土壤为砂质土,未经压实的砂土持水保肥力通常较低,因此一定程度的压实可促使过多的大孔隙减少,截留水分与养分的能力增强,对植物生长更有利,而进一步的压实会导致孔隙大量减少。在紧实度高的土壤中,矿质元素与水的接触面积减少,养分离子湍流和扩散运动减弱,降低养分循环速率,增加植物根系吸收养分的阻力[32],根系作为植物吸收养分的基础器官,对土壤有强烈的依赖性[33],根系构型在一定程度上受土壤结构影响,在紧实土壤中通常生长稀疏且分布在浅层土壤中,下扎深度受限[34],可能是压实土壤中植物根系的定植、穿插和摄取土壤中水分和养分的能力降低[33]。AMF通过侵染植物根系延伸植物养分与水分吸收面积,从而促进植物在紧实胁迫土壤中的生长发育,有研究表明接种AMF可以促进植物逆境胁迫中养分吸收的效率,从而提高植物在逆境下的生物量[35-36]。在养分或水分的胁迫下,接种丛枝菌根真菌处理显著地改善根系构型参数,如长度、投影面积、表面积、体积、根尖数、分支数和交叉数[37],接菌能对植株体内糖代谢产生影响,特别是诱导葡萄糖含量的增加改善根系构型[38],菌根的形态建成以及根系—菌根共生体系的发展有益于植物更好地适应土壤压实环境。
激素分泌是根系发育情况的决定性因素之一,不同内源激素之间具有相助或拮抗作用,IAA,CTK和GA通常促进组织细胞分裂分化,ABA则对细胞分化产生抑制[27]。土壤压实对植物根系生长的阻碍会引起根系内各激素的响应,有研究表明[5]土壤压实会导致植物内源激素分泌失调,改变植物内源激素的含量及其比例。植物根毛的形成和伸长受多种内源激素的调控,有研究显示[39]拟南芥根毛的发生和发育中,CTK与IAA存在相互拮抗、相互协同和相互累加的作用,高水平的CTK能促进根毛的形成,而IAA含量的提高能促进根毛的伸长。接种AMF会对寄主植物激素分泌产生影响,IAA,CTK等信号物质在分子水平上均参与到AMF共生体系中[40]。黄京华等[41]研究发现,接种摩西管柄囊霉可以促使玉米根内生长素含量上升,根条数增多,增加吸收面积,促进玉米生长,接种AMF能显著降低植株ABA含量增加的速度,有利于植物对N,P的积累[42]。KALDORF[43]认为AMF改变寄主植物玉米根系形态的机制是因为其能明显增加植株体内生长素的合成量。孙金华的研究[10]表明根系激素GA,CTK分泌与菌根侵染率、菌丝密度有密切的正相关关系。内源激素与AMF协同调控作用改善紧实土壤中植物的生理活动[44],进而促进根系形态发育。
接菌在重度压实环境中仍能显著促进某些矿质元素的吸收,可能是因为在紧实度高、孔隙度小的土壤中,AMF纤细的根外菌丝纤细,能深入根系达不到的微小孔隙。LI等[45]研究发现白三叶草根外菌丝至少能长到11.7 cm,且在此处菌丝密度仍高达5~6 m/g土,从而大大增加了土壤养分的空间有效性。研究表明[30]当土壤密度为1.8 g/cm3时,三叶草根系基本不能生长,而菌丝却能在其中伸展并吸收养分;菌根菌丝能向土壤中广泛伸展,形成庞大的根外菌丝网,使菌根植物与土壤的结合位点和接触面积要比非菌根植物大得多[46-47],从而大大促进植物地上部养分含量。此外,接种AMF能通过调控根系激素分泌来影响植物养分吸收,植物养分含量受根系激素分泌的影响显著,有研究[48]表明对植物施以外源IAA,可促进植物氮磷养分的吸收,可能是因为植物内源激素会影响植物光合同化物的运输和积累,通过影响细胞膜的通透性或植物吸收和分泌的流动方向决定矿质元素的吸收[49]。综上分析表明,接菌通过促进压实土壤中根系激素分泌来调节根系发育,通过菌丝协助根系进行养分吸收,改善植株在压实土壤中难以吸收养分的困境,进而提高植株生物量。
(1)与无压实相比,轻度压实更有利于柠条生长,重度压实后柠条生物量、株高、根系发育均下降。重度压实土壤中,接种AMF可以改善柠条根系构型,促进内源激素IAA,CTK,GA分泌,减少ABA的分泌,压实程度越大,IAA,CTK,GA激素分泌水平越高,接菌柠条总根长、根系平均直径、表面积和体积均显著大于对照。
(2)接菌能在一定程度上缓解压实对柠条养分吸收的不利影响,能通过改善植物根系构型、菌丝伸展促进地上部分N,P,Fe,Mn,Zn养分的吸收。重度压实土壤中接菌柠条地上部N,P养分含量显著增加,且柠条地上部分N,P,Zn养分吸收与根系IAA,CTK,GA的分泌显著正相关。
(3)煤矿区频繁的地表机械作业造成排土场部分区域土壤高度紧实,在这种条件下AMF可望进入这些压实的土壤部位发挥其有益作用。AMF菌丝促进植物养分吸收的机理还有待于进一步的研究,为矿区排土场压实土壤植被修复奠定理论基础。
[1] 李晋川,白中科,柴书杰,等.平朔露天煤矿土地复垦与生态重建技术研究[J].科技导报,2009,27(17):30-34.
LI Jinchuan,BAI Zhongke,CHAI Shujie,et al.Study on technology of land reclamation and ecological rehabilitation of waste land in Pingshuo surface mine[J].Science & Technology Review,2009,27(17):30-34.
[2] 白中科,赵景逵.工矿区土地复垦、生态重建与可持续发展[J].科技导报,2001,19(9):49-52.
BAI Zhongke,ZHAO Jingkui.Industrial and mining land reclamation,ecological reconstruction and sustainable development[J].Science & Technology Review,2001,19(9):49-52.
[3] YAO L,WILDING L P J D I S S.Micromorphological study of compacted mine soil in east Texas[J].Developments in Soil Science,1993,22:707-718.
[4] 刘涛,王金满,秦倩,等.矿区机械压实对土壤孔隙特性影响的研究进展[J].土壤通报,2016,47(1):233-238.
LIU Tao,WANG Jinman,QIN Qian,et al.Advance in the study on the effect of mechanical compaction on soil pore characteristics in mining area[J].Chinese Journal of Soil Science,2016,47(1):233-238.
[5] SHAH A N,TANVEER M,SHAHZAD B,et al.Soil compaction effects on soil health and cropproductivity:An overview[J].Environmental Science & Pollution Research International,2017,24(11):10056-10067.
[6] ROSOLEM C A,FOLONI J S S,TIRITAN C S.Root growth and nutrient accumulation in cover crops as affected by soil compaction[J].Soil & Tillage Research,2002,65(1):109-115.
[7] ZHAO Y,STEPHAN,KRFIMMELBEIN,et al.Spatial variability of soil properties affected by grazing intensity in inner Mongolia grassland[J].Ecological Modelling,2007,205(1):241-254.
[8] BOTTA G F,JORAJURIA D,DRAGHI L M.Influence of the axle load,tyre size and configuration on the compaction of a freshly tilled clayey soil[J].Journal of Terramechanics,2002,39(1):47-54.
[9] 孙纪杰.不同复垦机械压实对土壤物理特性影响的模拟研究[D].泰安:山东农业大学,2014.
SUN Jijie.The simulation of different land reclamation mechanicals compaction effection on the soil physical properties[D].Taian:Shandong Agricultural University,2014.
[10] 毕银丽,孙金华,张健,等.接种菌根真菌对模拟开采伤根植物的修复效应[J].煤炭学报,2017,42(4):1013-1020.
BI Yinli,SUN Jinhua,ZHANG Jian,et al.Remediation effects of plant root growth inoculated with AM fungi on simulation subsidence injured[J].Journal of China Coal Society,2017,42(4):1013-1020.
[11] RYAN M H,KIDD D R,SANDRAL G A,et al.High variation in the percentage of root length colonised by arbuscular mycorrhizal fungi among 139 lines representing the species subterranean clover (Trifolium subterraneum):A section of Agriculture,Ecosystems & Environment[J].Applied Soil Ecology,2016,98:221-232.
[12] 唐明.菌根生物技术在我国资源环境与可持续发展中的作用[C].中国青年农业科学学术年报,北京:中国农业出版社,2002:338-340.
[13] SMITH S E,IVER J,METTE G N,et al.Roles of arbuscular mycorrhizas in plant phosphorus nutrition:Interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisitioni[J].Plant Physiology,2011,156(3):1050-1057.
[14] ORTAS I.Effect of mycorrhiza application on plant growth and nutrient uptake in cucumber production under field conditions[J].Spanish Journal of Agricultural Research,2010,8(S1):116.
[15] 徐孟,郭绍霞.AMF对土壤压实胁迫下高羊茅生理的影响[J].草业科学,2018,35(6):1378-1384.
XU Meng,GUO Shaoxia.Effect of arbuscular mycorrhizal fungi on the physiology of Festuca arundinacea under soil compaction stress[J].Pratacultural Science,2018,35(6):1378-1384.
[16] 李文彬,宁楚涵,徐孟,等.丛枝菌根真菌和高羊茅对压实土壤的改良效应[J].草业学报,2018,27(11):131-141.
LI Wenbin,NING Chuhan,XU Meng,et al.Arbuscular mycorrhizal fungi and Festuca elata can improve fertility of compacted soil[J].Pratacultural Science,2018,27(11):131-141.
[17] 侯福林.植物生理学实验教程[M].北京:科学出版社,2009.
[18] 鲍士旦.土壤农化分析(第3版)[M].北京:中国农业出版社,2000.
[19] JAKOBSEN I,ABBOTT L K,ROBSON A D.External hyphae of vesicular—arbuscular mycorrhizal fungi associated with trifolium subterraneum L.[J].New Phytologist,1992,120(4):509-516.
[20] LIPIEC J,SIMOTA C.Chapter 16-role of soil and climate factors in influencing crop responses to soil compaction in central and Eastern Europe[J].Developments in Agricultural Engineering,1994,11(6):365-390.
[21] HÅKANSSON I,LIPIEC J.A review of the usefulness of relative bulk density values in studies of soil structure and compaction[J].Soil & Tillage Research,2000,53(2):71-85.
[22] 曹立为.耕层深度及土壤容重对大豆生长发育和产量的影响[D].哈尔滨:东北农业大学,2015.
CAO Liwei.The effect of topsoil depth and bulk density on soybean growth and yield[D].Haerbin:Northeast Agricultural University,2015.
[23] ARVIDSSON,JOHAN,HAKANSSON,et al.Response of different crops to soil compaction—short-term effects in Swedish field experiments[J].Soil & Tillage Research,2014,138:56-63.
[24] 吴强盛,邹英宁.柑橘丛枝菌根的研究新进展[J].江西农业大学学报,2014,36(2):279-284.
WU Qiangsheng,ZOU Yingning.New advances in the research of arbuscular mycorrhizas in citrus[J].Acta Agriculturae Universitatis Jiangxiensis,2014,36(2):279-284.
[25] WU Q S,ZOU Y N,HE X H,et al.Arbuscular mycorrhizal fungi can alter some root characters and physiological status in trifoliate orange (Poncirus trifoliata L.raf.) seedlings[J].Plant Growth Regulation,2011,65(2):273-278.
[26] 贺学礼,高露,赵丽莉.水分胁迫下丛枝菌根AM真菌对民勤绢蒿生长与抗旱性的影响[J].生态学报,2011,31(4):1029-1037.
HE Xueli,GAO Lu,ZHAO Lili.Effects of AM fungi on the growth and drought resistance of Seriphidium minchünense under water stress[J].Acta Ecologica Sinica,2011,31(4):1029-1037.
[27] 王三根.植物生理学[M].北京:科学出版社,2013.
[28] 韦竹立.丛枝菌根真菌对玉米(Zea mays L.)根系的形态结构的影响及生理机制[D].南宁:广西大学,2018.
WEI Zhuli.The effects of arbuscular mycorrhizal fungi on physiological and biochemical characteristics and morphologicai structure of root systems of Zea mays L[D].Nanning:Guangxi University,2018.
[29] LIU R,MIN L,MENG X,et al.Effects of AM fungi on endogenous hormones in corn and cotton plants[J].Mycosystema,2000,19(1):91-96.
[30] 李晓林,周文龙,曹一平.VA菌根菌丝对紧实土壤中磷的吸收[J].植物营养与肥料学报,1994,1(1):55-60.
LI Xiaolin,ZHOU Wenlong,GAO Yiping.Acquisition of phosphorus by va-mycorrhizal hyhpae from the dense soil[J].Journal of Plant Nutrition and Fertilizers,1994,1(1):55-60.
[31] 郭绍霞,张玉刚,尹新路.AM真菌对牡丹实生苗矿质营养和生长的影响[J].青岛农业大学学报(自然科学版),2010,27(3):182-185,194.
GUO Shaoxia,ZHANG Yugang,YIN Xinlu.Effects of arbuscular mycorrhizal fungi on mineral nutrition and growth of treepeony seedlings[J].Journal of Qingdao Agricultural University(Natural Science),2010,27(3):182-185,194.
[32] 吴永波,刘爽.土壤压实对土壤性质及植物生长的影响[J].林业科技开发,2010,24(1):15-17.
WU Yongbo,LIU Shuang.Advance in impacts of soil compaction research on the soil properties and plant growth[J].Journal of Forestry Engineering,2010,24(1):15-17.
[33] 金可默.作物根系对土壤异质性养分和机械阻力的响应及其调控机制研究[D].北京:中国农业大学,2015.
JIN Kemo.Root responses to heterogeneous nutrient distribution and soil mechanical impedance and management strategy[D].Beijing:China Agricultural University,2015.
[34] BENGOUGH A G,VALENTINE T A,BINGHAM I J,et al.Scaling root growth responses from seedlings to field[J].Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology,2009,153(2S):222.
[35] GHOLAMHOSEINI M,GHALAVAND A,DOLATABADIAN A,et al.Effects of arbuscular mycorrhizal inoculation on growth,yield,nutrient uptake and irrigation water productivity of sunflowers grown under drought stress[J].Agricultural Water Management,2013,117(1):106-114.
[36] 胡振琪,纪晶晶,王幼珊,等.AM真菌对复垦土壤中苜蓿养分吸收的影响[J].中国矿业大学学报,2009,38(3):428-432,449.
HU Zhenqi,JI Jingjing,WANG Youshan,et al.Effect of arbuscular mycorrhizal fungi on alfalfa’s nutrition absorption in reclamation soil[J].Journal of China University of Mining & Technology,2009,38(3):428-432,449.
[37] 吴强盛,袁芳英,费永俊,等.丛枝菌根真菌对白三叶根系构型和糖含量的影响[J].草业学报,2014,23(1):199-204.
WU Qiangsheng,YUAN Fangying,FEI Yongjun,et al.Effects of arbuscular mycorrhizal fungi on root system architecture and sugar contents of white clover[J].Pratacultural Science,2014,23(1):199-204.
[38] 袁芳英,黄咏明,李莉,等.菌根真菌对白三叶根系形态的影响及相关机理研究[J].长江大学学报(自然科学版),2014,11(11):39-42,50.
YUAN Fangying,HUANG Yongming,LI Li,et al.Effects of mycorrhizal fungi on root morphology of white trifoliate and related mechanisms[J].Journal of Yangtze Uninersity (Nat Sci Edit),2014,11(11):39-42,50.
[39] 李想.细胞分裂素抑制拟南芥侧根起始及调控根系发育的分子机理研究[D].杭州:浙江大学,2006.
LI Xiang.Study on the molecular mechanisms of cytokinin repression of lateral root initiation and regulation of root system development in Arabidopsis[D].Hangzhou:Zhejiang University,2006.
[40] RAUDASKOSKI M,KOTHE E J M.Novel findings on the role of signal exchange in arbuscular and ectomycorrhizal symbioses[J].Mycorrhiza,2015,25(4):243-252.
[41] 黄京华,刘青,李晓辉,等.丛枝菌根真菌诱导玉米根系形态变化及其机理[J].玉米科学,2013,21(3):131-135,139.
HUANG Jinghua,LIU Qing,LI Xiaohui,et al.Mechanism of maize root morphology change induced by arbuscular mycorrhizal fungi[J].Journal of Maize Sciences,2013,21(3):131-135,139.
[42] 杨蓉,郑钦玉,薛华清,等.AM真菌对沙田柚组培苗炼苗期水分生理及生长效应的研究[J].重庆师范大学学报(自然科学版),2009,26(2):115-119.
YANG Rong,ZHENG Qinyu,XUE Huaqing,et al.Influences of AM fungi on growth and water ecophysiology of grouped shatian pomelo during cultivating and training periods[J].Journal of Chongqing Normal University(Natural Science),2009,26(2):115-119.
[43] KALDORF M,LUDWIG-MÜLLER J.AM fungi might affect the root morphology of maize by increasing indole-3-butyric acid biosynthesis[J].Physiologia Plantarum,2000,109(1):58-67.
[44] KHALLOUFI M,MARTNEZANDJAR C,LACHAL M,et al.The interaction between foliar GA3 application and arbuscular mycorrhizal fungi inoculation improves growth in salinized tomato (Solanum lycopersicum L.) plants by modifying the hormonal balance[J].Journal of Plant Physiology,2017,214:134-144.
[45] LI X L,GEORGE E,MARSCHNER H.Extension of the phosphorus depletion zone in VA-mycorrhizal white clover in a calcareous soil[J].Plant & Soil,1991,136(1):41-48.
[46] 冯固,杨茂秋,白灯莎,等.VA菌根真菌对石灰性土壤不同形态磷酸盐有效性的影响[J].植物营养与肥料学报,1997,3(1):43-48.
FENG Gu,YANG Maoqiu,BAI Dengsha,et al.Influence of VA mycorrhizal fungi on availability of different phosphates in calcareous soil[J].Journal of Plant Nutrition and Fertilizers,1997,3(1):43-48.
[47] ABBOTT L K,ROBSON A D.Growth stimulation of subterranean clover with vesicular arbuscular mycorrhizas[J].Australian Journal of Agricultural Research,1977,28(4):639-649.
[48] 宁倩.IAA对水稻苗期生理特性和N、P养分吸收利用的影响[D].西安:西安建筑科技大学,2013.
NING Qian.Effect of IAA on physiological characteristics and N、P absorption and utilization in Rice Seedling[D].Xi’an:Xi’an University of Architecture and Technology,2013.
[49] WARDLAW I F,MONCUR L.Source,sink and hormonal control of translocation in wheat[J].Planta,1976,128(2):93-100.