矿用缓冲吸能装置的优化与实验

高永新,谭 淼,谢 苗

(辽宁工程技术大学 机械工程学院,辽宁 阜新 123000)

摘 要:为解决巷道液压支架让位吸能缓冲效果差的问题,通过结构分析以及相似计算的方法对缓冲装置进行了结构上的优化,将原有结构的卡销式改为卡箍式,降低了弹簧卡销部分占比空间,提高了液压立柱底座空间利用率。将单一刚体提供的支撑力改为内部填充泡沫材料作为吸能材料与刚体相结合来提供支撑力,分析了优化前后两装置的吸能效果,并且进行了3组实验来验证优化前后两装置载荷随位移变化的情况。理论分析表明:装置卡箍打开过程吸能量比原装置增加了3.9%;填充泡沫材料之后,吸能量增加了33.3%;总吸能量提高了22.6%,通过数据分析可见吸能效果与缓冲性能得到了明显地提高。研究分析表明:优化后装置初撑力明显增大,达到初撑力位移基本处于0.5 cm处,且波动稳定更加满足工程需要;卡箍打开过程吸能量增加了4.3%;泡沫材料吸能量增加了30.5%;总吸能量增加了21.2%;平稳阶段载荷波动系数下降9.3%;缓冲效果冲量提高21.6%;最大载荷波动值下降一半以上。优化之后缓冲装置所受冲击载荷大部分可作用于吸能材料,并且吸能材料可以方便地取出更换。相对于原装置提高了装置的使用寿命。吸能缓冲装置与填充材料组成的刚-柔耦合支护体系可有效增强立柱抗冲击能力,在一定程度上降低冲击地压事故造成的各种损失。

关键词:结构优化;缓冲吸能;泡沫材料;冲击地压;巷道支护

国家经济的高速发展决定了我国对能源消耗的快速增长。我国能源结构当中煤炭占主要份额。为了满足国家经济发展以及人民生活的需要,煤炭开采向深部发展已经成为趋势,研究表明,随采深增加,85%以上的冲击地压灾害发生在巷道中[1-2]。深部煤岩体组成结构特征、变形破坏特征、能量聚释特征与工程响应特性均与浅部明显不同,更易诱发冲击地压灾害,煤矿冲击地压频度和强度增加对人民生命、财产和生产安全产生极大的威胁[3-5]。国内煤矿的液压支架等支护设备大都让位位移小,防冲能力差,在受到冲击后,安全阀、泄压阀不能及时的泄压从而造成支护系统易整体突发性失稳破坏。尤其在深部采煤过程中,容易产生坚硬顶板断裂的情况,引发较强的冲击波进而造成采空区顶部岩石产生剧烈震荡以及突发性失稳。因此,提高支护设备在冲击地压作用下的防冲能力是目前矿井支护亟待解决的重大工程问题。

吸能构件可以起到有效的缓冲吸能作用,可极大的解决支护设备防冲能力差的问题,而目前与液压立柱结合使用的实用性较强的防冲吸能装置相对较少[6-9]。调查实践证明大多数冲击地压发生在采掘工作面巷道中。潘一山、唐治等[10-12]提出将吸能构件用于液压立柱,并设计了吸能缓冲装置。以材料弹塑性变形吸能的防冲方法为出发点,利用刚性结构与特殊弹塑性填充材料在冲击载荷作用下高效的吸能特性,解决液压立柱泄压受限、抗冲击能力弱的问题并满足装置初撑力和工作阻力的基本要求。然而此种缓冲吸能结构不能充分的利用立柱底座空间,吸能量相对偏小,装置压载过程初撑力不稳定,卡箍打开瞬间载荷变化过大,对装置冲击明显严重降低了装置使用寿命[13-17]

缓冲吸能构件的吸能和缓冲效果,直接关系着液压支架支护能力的改善。笔者基于以上缓冲吸能装置的不足,通过对缓冲吸能装置进行优化,极大的提高了其缓冲吸能效果。并且装置中的卡箍设计延长了装置的使用寿命,极大的提高了液压支架立柱底座的空间利用率。

1 装置优化介绍

1.1 装置优化对比

装置以45号钢为制造材料,泡沫材料作为消波缓冲吸能的主要承担者。图1,2为原装置与优化装置三维图以及零件图。

图1 装置零件

Fig.1 Part drawing of original installation

图2 原装置与优化装置三维图

Fig.2 Three dimensional diagram of the original device

分析图1,2对原装置卡销连接部分进行数学模型简化如图3所示。

图3 卡销数学简化模型

Fig.3 Simplified mathematical model of clamps

由图3可知,弹簧卡销部分占比空间较大,严重影响了液压立柱底座空间利用率,同时不利于安放到液压立柱当中。假定装置占用空间半径为R,下套筒外半径为r。则R-r为满足卡销所扩需的空间。液压立柱吸能空间容积为确定值,因此吸能材料有效空间越大吸能缓冲效果越好。卡销的设计严重影响了立柱吸能空间的利用率,降低了液压立柱的缓冲吸能效果。鉴于此,为了提高立柱吸能空间利用率以及改善立柱的缓冲吸能效果,将卡销改为卡箍式,将单一刚体提供支撑力改为吸能材料与刚体相结合提供支撑力,如下图4为原装置以及装置优化后剖切图。

图4 装置实验模型剖切图

Fig.4 Cut-off diagram of device test model

1.2 装置力学分析

根据文献[12]得原装置各项尺寸,在相同空间下通过相似理论计算得出现装置尺寸。相似比系数=优化装置直径/原装置直径。

空间占比增加系数γ

(1)

根据设计类型及相似理论新旧装置,设计数据见表1,表中,新装置与旧装置上套筒外径系数比为1.70,内径系数比为1.72;新装置与旧装置下套筒外径系数比为1.67,内径系数比为1.70。

表1 装置优化尺寸及系数比

Table 1 Improved size and coefficient ratio of the device

套筒装置新装置原装置上套筒外径ϕ1/mm16094内径ϕ2/mm11064下套筒外径ϕ3/mm200120内径ϕ4/mm16094

装置初撑力由泡沫材料和钢性结构共同承担,根据液压支柱设计标准设计装置初撑力为F,上套筒圆柱泡沫材料直径R1=100 mm,材料压缩应力为9.5 MPa,提供力为70 kN。

分析装置,分别建立如图5,6卡箍断裂临界受力数学模型以及装置整体受力模型。取卡箍的微小单元dx为研究对象,卡箍受径向的膨胀压力P0。图5,6中,r为卡箍半径;Fh为上套筒受整体载荷力;Fp为泡沫材料支撑力;F1,F3为卡箍与上套筒的相互作用力;Fz为下套筒对卡箍支撑力;Ff为材料之间摩擦力;F1为卡箍径向力;μ为材料之间摩擦因数;α为卡箍轴向斜角。

图5 卡箍受力模型

Fig.5 Sketch of force model of pin

图6 上套筒与卡箍受力模型

Fig.6 Force model of sleeve and clamp on top

由文献[16-17]及数学模型建立卡箍断裂方程:

(2)

P0=σcldx

(3)

式中,σc为断裂应力;E为断裂吸收能量;ξ为单位面积表面能;l为卡箍高。

由图6装置整体受力模型可得

总体受力平衡:

Fn=Fp+Fz

(4)

上套筒受力平衡:

Fn=2F3sin α+Fp

(5)

卡箍受力平衡:

X轴: Ff+F1=F2cos α

(6)

Y轴: F2sin α=Fz μ=Ff

(7)

整理式(4)~(7)得极限平衡方程为

(8)

P0=2F1代入式(8)得

(9)

由加工装置及力学模型分析得:μ=0.2,tan α=0.6,因此卡箍加工设计材料为Q235,断裂应力为500 MPa,设计宽度为10 mm,厚度为1 mm。

2 装置特性数值比较

2.1 吸能效果分析

实验装置吸能主要分为两部分:① 卡箍在上套筒下移过程中断裂吸能;② 上下套筒内填充泡沫材料受压时的破坏吸能。缓冲吸能装置设计结构相同,因此卡箍断裂吸能以及泡沫材料吸能的理论总量应该相同。

卡箍断裂吸能:

(10)

式中,Ek为卡箍吸能量;Fk为卡箍轴向载荷;lk为卡箍打开阶段上套筒轴向位移。

将泡沫材料准静态压缩实验分为3个阶段:线弹性阶段、过渡阶段、载荷平稳阶段[18-19],由于泡沫材料分上套筒和下套筒且上下套筒内泡沫材料达到这3个阶段过程不同,因此应分别计算上下套筒内泡沫材料的吸能量,优化之后装置的主要吸能为泡沫材料压缩过程的过渡阶段以及载荷平稳阶段。

分析装置结构,上套筒内泡沫材料首先达到平稳阶段:

(11)

式中,Fn为上套筒内泡沫材料整体载荷;Ft为上套筒内泡沫材料的平台载荷;l1为上套筒位移;R1为上套筒圆柱泡沫材料半径;Mn为泡沫材料力学特性常数。

上套筒内泡沫材料体积V1

(12)

式中,h1为上套筒内泡沫材料高度。

由文献[14-19]及实验推导得上套筒吸能量E1

(13)

式中,E1为上套筒泡沫材料吸能量。

下套筒压载过程受力为

(14)

式中,Fm为下套筒内泡沫材料整体载荷;Fx为整体平台载荷;l2为下套筒材料压缩长度;R2为下套筒圆柱泡沫材料半径。

下套筒泡沫材料体积V2

(15)

式中,h2为下套筒内泡沫材料高度。

下套筒吸能量为

(16)

式中,E2为下套筒泡沫材料吸能量。

对装置进行整体分析以及结合上述计算公式整理化简可以计算得出总吸能量Ez

Ez=Ek+E1+E2

(17)

整理化简得

(18)

设计加工缓冲吸能装置的总质量为m;整个装置的吸能总量与装置自身总质量之比,即比吸能为ESEA,则有

(19)

2.2 缓冲性能分析

装置的缓冲主要评价指标有载荷波动系数、冲量、装置下降载荷以及上升载荷系数。

压载过程中载荷的波动系数Δ越小对装置的冲击以及震动越小,相对应缓冲性能越好。

(20)

式中,Fmax为压溃载荷峰值,由实验数据曲线得到;Fm为平均压溃载荷,总吸能量与总压缩位移的比值。

冲量是装置整个受载过程中缓冲效果的量度,单位时间内的冲量大小代表了被冲击物体对冲击力的卸载能力。因此材料缓冲效果的优劣主要体现于相同压缩时间冲量的大小。本次研究为匀速度加载(载荷随位移的变化而变化);冲量I为压缩时间t与动态变化载荷F的积分。

(21)

式中,s为装置压载过程位移;v为压载速度。

由于装置的设计需要提供支撑力,当卡箍断裂或打开的时刻支撑力会瞬间下移与下套筒形成冲击,而载荷下降程度决定了冲击的大小,载荷下降越小吸能装置越平稳。即从上套筒与下套筒填充材料接触瞬间到填充材料压缩至平稳状态过程中,会出现载荷的突然下降以及迅速上升,下降载荷以及上升载荷值也是评价缓冲性能的一个重要指标。

最大下降载荷ΔF

ΔF=Fkmax-Fmin

(22)

上升载荷系数ξ

(23)

式中,Fkmax为卡箍打开最大初撑力载荷值;Fmin为载荷下降最小值;Fsmax为卡箍打开后载荷上升最大值。

3 实 验

3.1 室内实验

本次实验采用如图7,8所示的200 t压力机、多功能数据采集仪等实验装备。

图7 实验装置

Fig.7 Test apparatus

图8 实验数据收集仪

Fig.8 Experimental data collector

根据实验设计方案,按步骤进行实验:

(1)将泡沫材料放入吸能装置中,调节装置使其具备一定初撑力,保证装置完好。

(2)将吸能装置放入实验台下,将应变片贴在压力机上,同时与数据采集器相连,以便采集数据,本文为了实验的准确性对填充泡沫材料设计了a,b,c三组实验,图9为压缩前泡沫材料。

图9 装填泡沫材料

Fig.9 Filling foam material

(3)打开缓冲吸能装置,装填泡沫材料,调节压力机到将要与吸能装置接触的位置。启动压力机以0.05 mm/s的速度压缩吸能装置,在卡箍(卡销)打开之后,继续压缩2 cm左右载荷基本处于平稳阶段后停止压缩,重复以上过程,进行3组实验。压力机加载压缩吸能装置,观察显示器实时确定采集数据的正确性。

(4)泄载压力,拆除装置安全关闭电源。

3.2 实验数据分析

实验结束后将3组数据导入电脑,利用Origin对数据进行处理得图10所示3组实验数据曲线。

由现场实验和图10载荷变化曲线整体分析可知整个压载过程主要为3个阶段。优化装置第1阶段:卡箍打开阶段,开始加载时上套筒不与泡沫材料接触,载荷上升斜率较大,随着位移的增大与泡沫材料接触瞬间,载荷上升斜率变小直至达到初撑力;原装置第1阶段:原 装置由于利用弹簧卡销来提供支撑力,去除开始由于摩擦力的影响,基本符合胡克定律。二者区别:优化装置初撑力大于原装置初撑力,优化装置达到初撑力的位移比原装置达到初撑力的位移稳定,装置优化后达到初撑力的位移基本处于0.5 cm位移处,而原装置达到初撑力的位移相较于0.5 cm变化较大,其主要原因为:卡箍的断裂膨胀位移远远小于弹簧弹性变形位移。

图10 3组实验数据曲线

Fig.10 Three experimental data curves

过渡阶段:卡箍打开与下套筒泡沫接触开始压载下套筒内泡沫材料。优化装置第2阶段:由于初撑力由泡沫材料以及卡箍共同提供,因此当卡箍打开之后,载荷下降到上套筒泡沫材料提供支撑力部分,随着位移的增加,上套筒与下套筒泡沫材料接触,载荷开始增大;原装置第2阶段:载荷瞬间下降到零载荷变化较大,由于上套筒与下套筒泡沫材料不接触因此载荷下降为0时具有一定的位移差。二者区别:优化装置下降载荷小并且下降位移差固定平稳。

第3阶段压载下套筒泡沫材料吸能量完全变为泡沫材料吸能。优化装置第3阶段:上套筒与下套筒内泡沫材料开始同时压载;原装置第3阶段:随着上套筒位移开始压载下套筒内泡沫材料。二者区别:优化装置整体载荷较高,载荷波动幅度较小。

为了便于优化装置与原装置的理论和实验数据进行对比分析,利用式(11)~(23)分别计算3组的吸能性能指标以及缓冲效果指标,取3组计算平均值与实验平均值进行比较。将实验数据和理论计算值同时列于表2,3中。由于载荷峰值通常由吸能材料的载荷位移实验曲线获得,因此在表3中只列出载荷最大下降值和载荷上升量的实验数据。吸能性能指标,缓冲效果指标详细对比结果见表2,3。

由实验曲线图及表2,3可知:优化后装置吸能量性能和缓冲效果具有明显的提高。实验得出优化后装置第1阶段卡箍吸能量为490 J,增加4.3%,泡沫材料吸能量为1 097 J,增加30.5%,总吸能量为1 587 J,增加21.2%,优化装置冲量增加21.6%,载荷波动系数减少9.3%,最大下降载荷以及上升载荷明显小于原装置。吸能量的增大有效提高了液压支架的防冲性能,冲击地压发生时,吸能装置的让位为液压支架安全阀的打开提供一定的时间。表2中吸能指标实验值皆大于理论值,经过分析知主要原因是在实验过程中存在摩擦吸能,次要原因是其他装置的影响吸能。

表2 吸能性能指标对比

Table 2 Comparison of energy absorption performance

项目总吸能量/J理论值实验值卡箍吸能量/J理论值实验值泡沫材料吸能量/J理论值实验值比吸能/(J·kg-1)理论值实验值原装置1 2741 310464470810840254.8262优化装置1 5621 5874824901 0801 097312.4317.4增量/%22.621.23.94.333.330.522.621.2

表3 缓冲效果指标对比

Table 3 Comparison of buffer effect indicator

项目冲量/(MN·s)理论值实验值载荷波动系数理论值实验值最大下降载荷/kN实验值载荷上升量/kN实验值原装置5.255.561.241.189076优化装置6.286.761.121.073522增量/%19.721.6-9.6-9.3-61.1-71.2

4 结 论

(1)优化后的装置初撑力明显得到增大,且达到初撑力的位移基本处于0.5 cm处,比原装置更加稳定,相对于原装置更加满足工程需要。不易发生变形破坏,填充材料可方便取出,装置重复利用。

(2)极大地利用了液压立柱底座空间,提高了空间利用率,吸能性能各项指标显著提高,冲量增大,载荷波动系数减小,载荷上升,下降载荷值变小极大地减小了冲击对缓冲吸能装置损伤,提高了装置的使用寿命。

(3)优化装置可有效提高立柱防冲性能,缓冲作用增加,时间说明缓冲吸能装置优化后更适用于防冲液压支架,可有效提高巷道液压支架让位吸能缓冲效果。

参考文献(References):

[1] 姚精明,王路,闫永业,等.冲击危险巷道锚杆支护防冲原理解析[J].采矿与安全工程学报,2017,34(3):535-541.

YAO Jingming,WANG Lu,YAN Yongye,et al.The supporting principle of truss cable in the rockburst roadway and its application[J].Mining and Safety Engineering,2017,34(3):535-541.

[2] 张勇,孙晓明,郑有雷,等,深部回采巷道防冲释能耦合支护技术及应用[J].岩石力学与工程学报,2019,38(9):1860-1869.

ZHANG Yong,SUN Xiaoming,ZHENG Youlei,et al.Application on deep mining roadway anti-punching and energy-releasing coupling support technology[J] Chinese Journal of Rock Mechanics and Engineeringhttps,2019,38(9):1860-1869.

[3] 潘一山,李忠华,章梦涛.我国冲击地压分布、类型、机制及防治研究[J].岩石力学与工程学报,2003,22(11):1844-1851.

PAN Yishan,LI Zhonghua,ZHANG Mengtao.Distribution,type,mechanism and prevention of rockbrust in China[J].Chinese Journal of Rock Mechanics and Engineering,2003,22(11):1844-1851.

[4] 苗学源,钟晓勤,瞿志豪,等.一种弹簧变形与刚性位移组合的缓冲装置[J].机械设计,2016(1):60-63.

MIAO Xueyuan,ZHONG Xiaoqin,QU Zhihao,et al.A buffer device combined with spring deformation and rigid displacement[J].Mechanical Design,2016(1):60-63.

[5] 金淦,王连国,李兆霖,等.深部半煤岩回采巷道变形破坏机理及支护对策研究[J].采矿与安全工程学报,2015,32(6):963-967.

JIN Gan,WANG Lianguo,LI Zhaolin,et al.Department of mining roadway in deep coal rock deformation,failure mechanism and supporting measures[J].Journal of Mining and Safety Engineering,2015,32(6):963-967.

[6] 周华志,王志瑾,韩微,等.具有褶皱薄弱段的正弦波纹梁吸能性能研究[J].振动与冲击,2017,36(17):248-254.

ZHOU Huazhi,WANG Zhijin,HAN Wei,et al.Study on energy absorption properties of sinusoidal corrugated beams with weak wrinkle segments[J].Vibration and Shock,2017,36(17):248-254.

[7] 高明仕,杨青松,赵一超,等.高应力大变形巷道让压锚索支护技术及装置研制[J].采矿与安全工程学报,2016,33(1):7-11.

GAO Mingshi,YANG Qingsong,ZHAO Yichao,et al.Development of high pressure and large deformation roadway support technology and device[J].Journal of Mining and Safety Engineering,2016,33(1):7-11.

[8] 潘一山.冲击地压发生和破坏过程研究[D].北京:清华大学,1999:1-47.

PAN Yishan.Rockburst mechanism and failure process[D].Beijing:Tsinghua University,1999:1-47.

[9] 钱鸣高.加强煤炭开采理论研究 实现科学开采[J].采矿与安全工程学报,2017,34(4):222-228.

QIAN Minggao.Strengthening theoretical research on coal mining and realizing scientific mining[J].Journal of Mining and Safety Engineering,2017,34(4):222-228.

[10] 唐治,潘一山,李祁,等.矿用防冲方形折纹薄壁构件吸能特性数值分析[J].振动与冲击,2014,33(23):87-191,115.

TANG Zhi,PAN Yishan,LI Qi,et al.Numerical analysis of energy-absorption properties of a thin-walled component with square folds for rock burst prevention in mine[J].Journal of Vibration and Shock,2014,33(23):87-191,115.

[11] 潘一山,肖永惠,李忠华,等.冲击地压矿井巷道支护理论研究及应用[J].煤炭学报,2014,39(2):222-228.

PAN Yishan,XIAO Yonghui,LI Zhonghua,et al.Study of tunnel support theory of rockburst in coal mine and its application[J].Journal of China Coal Society,2014,39(2):222-228.

[12] 潘一山,肖永惠,李国臻,等.一种矿用消波耗能缓冲装置设计及试验初探[J].岩石力学与工程学报,2012,31(4):649-655.

PAN Yishan,XIAO Yonghui,LI Guozhen,et al.Design and test of a wave dissipation energy dissipation device for mine[J].Proceedings of the University of Rock Mechanics and Engineering,2012,31(4):649-655.

[13] 刘志芳,黄志超,路国运,等.泡沫铝填充金属薄壁圆管的实验和理论研究[J].固体力学学报,2017,38(1):55-64.

LIU Zhifang,HUANG Zhichao,LU Guoyun,et al.Experimental and theoretical study on thin-walled tube filled with aluminum foam[J].Chinese Journal of Solid Mechanics,2017,38(1):55-64.

[14] 黄睿,刘志芳,路国运,等.轴向压缩下泡沫铝填充薄壁圆管吸能特性研究[J].太原理工大学学报,2016,47(1):101-107.

HUANG Rui,LIU Zhifang,LU Guoyun,et al.Study on energy absorption characteristics of thin-walled tube filled with aluminum foam under axial compression[J].Journal of Taiyuan University of Technology,2016,47(1):101-107.

[15] 杨姝,刘国平,亓昌,等.金属空心球梯度泡沫结构抗冲击特性仿真与优化[J].浙江大学学报(工学版),2016,50(8):1593-1599.

YANG Shu,LIU Guoping,QI Chang,et al.Simulation and optimization of anti impact characteristics of metal hollow spherical gradient foam structure[J].Journal of Zhejiang University(Engineering Edition),2016,50(8):1593-1599.

[16] 杨星,于野,张伟,等.基于三维多胞结构的汽车吸能盒优化设计[J].大连理工大学学报,2017,57(4):331-336.

YANG Xing,YU Ye,ZHANG Wei,et al.Optimization design of automobile energy absorbing box based on three-dimensional multi cell structure[J].Journal of Dalian University of Technology,2017,57(4):331-336.

[17] 马箫,潘一山,张建卓,等.板块倾角对折棱管防冲支护装置吸能特性的影响[J].中国安全科学学报,2017,42(7):122-127.

MA Xiao,PAN Yishan,ZHANG Jianzhuo,et al.Influence of plate inclination angle on energy absorption characteristics of pre-folded edge tube anti-scour and supporting device[J].China Safety Science Journal,2017,42(7):122-127.

[18] 郝志勇,刘亚强,潘一山.矿用缓冲吸能装置及其填充材料试验研究[J].采矿与安全工程学报,2018,35(3):620-628.

HAO Zhiyong,LIU Yaqiang,PAN Yishan.Mining buffer energy absorbing device and its filling material experimental research[J].Journal of Mining and Safety Engineering,2018,35(3):620-628.

[19] 代连朋,潘一山,王爱文.轴裂式构件变形吸能特性研究及工程应用初探[J].煤炭学报,2017,42(7):1682-1690.

DAI Lianpeng,PAN Yishan,WANG Aiwen.Study on deformation energy absorption characteristics of axial split members and its engineering application[J].Journal of China Coal Society,2017,42(7):1682-1690.

Improvement and experimental study of buffer energy absorption device for mine

GAO Yongxin,TAN Miao,XIE Miao

(School of Mechanical Engineering,Liaoning Technical University,Fuxin 123000,China)

Abstract:In order to solve the buffer problem of poor absorption effect with roadway hydraulic support,based on the structural analysis and similarity calculation method,the structure of buffer device is optimized.Through the changes of the original bayonet type structure to clamp type structure,the space taken by spring pin part is reduced,thus the space utilization of hydraulic pillar base is improved.The supporting force provided by a single rigid body is replaced by the internal foam material as the energy absorbing material combined with the rigid body to provide the supporting force.The energy absorbing effect of the two devices before and after optimization is analyzed,and three groups of experiments are carried out to verify the load change with displacement of the two devices before and after optimization.Theoretical analysis shows that the energy absorption during the opening of the clamp is 3.9% higher than that of the original device.Energy absorption increases by 33.3% after foam filling.The total energy absorption increases by 22.6%,and the energy absorption effect and buffering performance are obviously improved through data analysis.Experimental research and analysis show that the initial supporting force of the device increases significantly after optimization,and the displacement of the initial supporting force is basically at 0.5 cm,and the fluctuation and stability can better meet the needs of the project.Energy absorption during clamp opening increases by 4.3%.The energy absorption of foamed materials increases by 30.5%.Total energy absorption increases by 21.2%.In the stationary stage,the load fluctuation coefficient decreases by 9.3%.Buffer effect impulse increases by 21.6%.The maximum load fluctuation value decreases by more than half.After optimization,most of the shock load of the buffer device can be applied to the energy-absorbing material,and the energy-absorbing material can be easily removed and replaced.Compared with the original device,the service life of the device is increased.The rigid-flexible coupling support system is composed of energy-absorbing and buffering devices and the filling materials can effectively enhance the impact resistance of columns and reduce various losses caused by rock burst accidents to a certain extent.

Key words:optimum structure;energy absorption;foam material;rock burst;roadway supporting

中图分类号:TD324;TD35

文献标志码:A

文章编号:0253-9993(2020)09-3325-08

移动阅读

高永新,谭淼,谢苗.矿用缓冲吸能装置的优化与实验[J].煤炭学报,2020,45(9):3325-3332.

GAO YongXin,TAN Miao,XIE Miao.Improvement and experimental study of buffer energy absorption device for mine[J].Journal of China Coal Society,2020,45(9):3325-3332.

收稿日期:20190627

修回日期:20190831

责任编辑:郭晓炜

DOI:10.13225/j.cnki.jccs.2019.0860

基金项目:辽宁省教育厅重点攻关资助项目(LJ2019ZL003);国家自然科学基金面上资助项目(51874158)

作者简介:高永新(1973—),男,辽宁阜新人,副教授,博士。E-mail:gaoyx1125@126.com

通讯作者:谭 淼(1994—),男,辽宁大石桥人,硕士研究生。E-mail:995322860@qq.com