Ni,Pd,Pt负载α-MoC催化水煤气变换反应理论

史 肖1,2,邹雪燕1,2,黄 伟1,2,左志军1,2

(1.太原理工大学 省部共建煤基能源清洁高效利用国家重点实验室,山西 太原 030024; 2.太原理工大学 煤科学与技术教育部重点实验室,山西 太原 030024)

要:氢能因清洁高效、可再生等优点,被视为21世纪最具发展潜力的清洁能源。水煤气变换反应是工业上常用的反应,在将CO废气回收利用的同时也是一种重要的制氢手段,具有治理环境和节能减排的双重优点。α-MoC作为一种催化载体,显示出优异的特性。Pd,Ni,Pt基催化剂是水煤气变换反应常用的催化剂。为了进一步了解α-MoC载体在水煤气变换反应中的作用和其负载不同金属时的催化性能,密度泛函理论和动力学蒙特卡洛方法考察了Ni4/α-MoC(111),Pd4/α-MoC(111)和Pt4/α-MoC(111)上的反应机理和活性。研究结果显示,在Ni4/α-MoC(111)和Pd4/α-MoC(111),水煤气变换反应为氧化还原路径:CO直接与H2O分解产生的氧结合,生成CO2;在Pt4/α-MoC(111)催化剂上,水煤气变换反应通过羧酸盐路径发生:CO与H2O分解产生的羟基结合,生成羧酸盐中间体,最后分解成CO2。Ni4/α-MoC(111)和Pd4/α-MoC(111)催化剂上水煤气变换反应的能垒较高,因此催化剂活性和H2的转换频率较低。Pt4/α-MoC(111)催化剂上,由于CO的强稳定性导致活性位点被其覆盖,反应活性较低;随着反应温度的升高,CO的脱附能降低,催化活性随之增高。总体来说,标准大气压下,反应温度在400~500 K,H2O与CO的物质的量之比为1时,Pt4/α-MoC (111)催化剂H2的转换频率最高。相比Pt/Al2O3和Pt/TiO2催化剂,Pt/α-MoC是最佳的水煤气变换反应催化剂。

关键词:水煤气变换;Ni/α-MoC;Pt/α-MoC;Pd/α-MoC;密度泛函理论;动力学蒙特卡洛

水煤气变换反应(WGS,CO(g)+H2O(g)→CO2(g)+H2(g))是CO去除和H2制备的途径[1],也是合成气转化过程中的重要反应,如甲醇合成[2]和费托合成[3]。常见的WGS反应催化剂有Au,Cu,Pd,Ni和Pt基等催化剂[4-8]。为了提高催化剂的活性,通常通过添加助剂[9-12]或改变载体[13-15]的方法。

过渡金属碳化物是一种金属间填充型化合物,是由碳原子填隙式融进过渡性金属的晶格中形成。由于其表面性质和催化活性类似于Pt等贵金属,目前广泛应用于催化加氢、脱氢、WGS和异构化等反应[16-17]。如,Au/α-MoC用于WGS反应时,反应速率和CO转化率分别是Cu/Zn/Al2O3催化剂的354倍和17.8倍[18],同时Au/α-MoC催化剂的活性明显优于Au/β-MoC。α-MoC对WGS反应起到了重要的作用,因此,笔者选取了α-MoC作为载体。

理论计算结果显示,α-MoC(111)载体对WGS反应没有催化效果,但是能够促进H2O的解离。当其负载Au和Cu后能够提高WGS反应在2种催化剂表面的活性[18-19]。Pd,Ni,Pt基催化剂也是WGS反应的常用催化剂,为了进一步了解α-MoC载体在WGS反应中的作用和WGS反应机理,笔者使用密度泛函理论(DFT)和动力学蒙特卡罗(KMC)方法系统的研究这3种金属负载α-MoC催化剂上的WGS反应过程,研究不同反应温度时的反应速率和催化转换频率(TOF),并对WGS反应催化剂的优化提供指导。

1 计算方法和模型

计算使用VASP软件[20-22],采用了GGA-PBE泛函求解电子交换相关能[23]。平面波截断能取值为 415 eV,布里渊区的k点选择 3×3×1[24]。在结构优化的过程中当力的变化小于0.1 eV/nm和能量的变化小于1.0×105 eV/atom时达到收敛标准。采用CI-NEB方法进行过渡态搜索,对达到收敛标准的过渡态进行频率分析,通过唯一虚频确定过渡态[25]

首先对金属晶胞M(M=Ni,Pd,Pt)和α-MoC晶胞进行了优化,优化后对应的的晶格常数分别为aNi=0.351 3 nm,aPd=0.393 7 nm,aPt=0.396 7 nm,aα-MoC=0.437 0 nm,分别与实验值 aNi=0.352 4 nm,aPd=0.389 1 nm,aPt=0.392 4 nm和aMoC=0.427 8 nm接近[26-27]。因此,选择的计算方法和参数对本文的计算体系是合理的。α-MoC(111)采用7层3×3的平板模型,1.5 nm的真空层。由于H2O的快速解离,α-MoC表面的Mo位点被O占据[19],如图1所示,图1中top,hol,bri为吸附位点。计算过程中固定底面两层,其余原子弛豫。金属M4簇负载存在2种构型:平面簇构型(2d rhombic M4)和四面体簇(3d-tetrahedral M4),对应的吸附能分别为Ni4(2d:-8.41 eV;3d:-7.63 eV),Pd4(2d:-8.56 eV;3d:-6.77 eV),Pt4(2d:-10.20 eV;3d:-9.32 eV)。计算结果表明,平面簇构型更稳定,故仅考虑了2d-M4负载在α-MoC(111)表面。

图1 M4/α-MoC(111)的侧视图和俯视图
Fig.1 Top and side view of M4/α-MoC(111)

2 结果与讨论

对于水煤气变换反应,反应机理主要有2种:① 氧化还原机理:CO直接与H2O分解产生的氧结合,生成CO2;② 甲酸盐途径或者羧酸盐途径:CO与H2O分解产生的羟基结合,生成甲酸盐或羧酸盐中间体,最后分解成CO2[28-30]。反应过程中所涉及到的中间体,反应物和产物的最稳定吸附构型如图2所示。

图2和表1显示,反应物、中间体和产物在3类催化剂表面的最优吸附位相近,只有*H在Pt4/α-MoC(111)和*CO2在Ni4/α-MoC(111)的吸附例外。对中间体来说(*O,*OH,*CO2*H2O,*CHOO,*COOH),它们在Pd4/α-MoC(111)和Pt4/α-MoC(111)的吸附能相近,吸附稳定性低于对应物种吸附在Ni4/α-MoC(111)。

图2 WGS反应所涉及的各中间体在Ni4/α-MoC(111)
的稳定吸附构型
Fig.2 Adsorption configurations of intermediates involved in the
WGS on the surfaces of Ni4/α-MoC(111)

表1 M4/α-MoC(111)面WGS反应过程中涉及到的中间体,反应物和产物的最优吸附位和吸附能
Table 1 Adsorption energy and adsorption site of the possible intermediates,reactants and productions
during the WGS reaction on M4/α-MoC(111)

物种Ni4/α-MoC(111)吸附位点吸附能/eVPd4/α-MoC(111)吸附位点吸附能/eVPt4/α-MoC(111)吸附位点吸附能/eV*COhol-2.23hol-1.71top-2.21*H2Otop-1.09top-0.83top-0.66*OHhol-4.27hol-3.52hol-3.26*Ohol-5.89hol-4.22hol-4.22*Hhol-2.74hol-2.62O top-2.63*COOHbri-3.04bri-2.45bri-2.63*CHOObri-4.20bri-3.35bri-3.42*CO2bri-0.76—-0.38—-0.26*H2—-0.05—-0.04—-0.06

注:*为吸附物种。

反应物*CO吸附在Ni4/α-MoC(111)和Pd4/α-MoC(111)的吸附能相近(-2.23和-2.21 eV),而在Pt4/α-MoC(111)面的吸附稳定性低于Ni4/α-MoC(111)和Pd4/α-MoC(111)面。相比CO在Ni(111),Pd(111)和Pt(111)的吸附能,载体α-MoC提高了CO在Ni和Pd的吸附稳定性,但是降低了在Pt上的吸附稳定性[31-32]。对*H2O来说,载体α-MoC一定程度上提高了其在Ni,Pd和Pt表面的吸附稳定性[31-32]

优化后,产物*CO2远离Pd4/α-MoC(111)和Pt4/α-MoC(111)面,但是其吸附在Ni4/α-MoC(111)的bri位,这是由于*CO2在Ni4/α-MoC(111)面的吸附稳定性强于Pd4/α-MoC(111)和Pt4/α-MoC(111)面。总体来说,相较Ni(111),Pd(111)和Pt(111),α-MoC(111)提高了CO2在3种催化剂表面的吸附稳定性[31-32]。对于H2来说,其在3个表面的吸附能力很弱,载体对其吸附基本没有影响。

*H2O的解离(*H2O+**OH+*H)是WGS反应的第1步,在Ni4/α-MoC(111)上*H2O解离的能垒为1.16 eV。对于氧化还原机理,*O生成存在2种方式:① *OH直接裂解(*OH+**O+*H)能垒Ea为0.95 eV;② *OH歧化反应(*OH+*OH→*H2O+*O)能垒为0.37 eV。最后,*CO氧化生成*CO2需克服1.62 eV的能垒。对于甲酸盐和羧酸盐路径,*CO与*OH反应,生成*CHOO(Ea=2.84 eV)或*COOH(Ea=1.61 eV)。结果表明,在Ni4/α-MoC(111)上氧化还原机理容易发生,速控步骤为*CO氧化。

在Pd4/α-MoC(111)上,*H2O克服1.23 eV能垒解离生成 *OH 和 *H。当发生氧化还原反应时,*OH歧化反应的能垒为0.35 eV,而*OH直接解离的能垒为1.02 eV。最后,*CO氧化生成*CO2的能垒为0.64 eV。在发生甲酸盐或羧酸盐路径中,*CO与*OH反应生成*CHOO和*COOH的能垒分别为1.64和1.28 eV。因此,在Pd4/α-MoC(111)上,WGS反应的氧化路径为主要路径,H2O的解离为速控步骤。

在Pt4/α-MoC(111)上,H2O的解离能垒为0.86 eV。当发生氧化还原反应时,*OH+**O+*H和*OH+*OH→*H2O+*O的反应能垒分别为1.28和0.35 eV,*CO氧化生成*CO2的能垒为0.81 eV。在发生甲酸盐或羧酸盐路径中,*CO与*OH反应生成*CHOO和*COOH的能垒分别为1.72和0.66 eV。由于生成*COOH的能垒远远低于生成*HCOO的能垒,因此*CO和*OH反应优先生成*COOH。最后,经*COOH与*OH反应生成*CO2*H2O(Ea=0.42 eV)。

基于此,根据WGS反应的正逆反应能垒和不同温度时的指前因子,利用KMC研究了WGS反应在Ni4/α-MoC(111),Pd4/α-MoC(111)和Pt4/α-MoC(111)上的反应路径和催化转换频率。对于反应物和产物的吸附和脱附,考虑了熵的贡献[33]。KMC模型和计算参数等详细信息见文献[34]。

KMC结果显示,标准大气压(n(CO)∶n(H2O)=1∶1,物质的量之比)和反应温度为500 K时,在Ni4/α-MoC(111)和Pd4/α-MoC(111)催化剂上,水煤气变换的反应机理为氧化还原机理如图3所示,图3中,TS为过渡态。即CO(g)+H2O(g)→*CO+*H2O→*CO+*OH+*H→*CO+*O+*2H→*CO2+*H2→CO2(g)+H2(g)。需要指出的是,尽管*OH+*OH→*H2O+*O的反应能垒远远小于*OH+**O+*H的反应能垒,然而由于高的*H2O→*OH+*H反应能垒导致表面*OH覆盖度过低。因此,KMC结果显示*OH的直接解离是*O产生的反应途径。在Pt4/α-MoC(111)催化剂上,水煤气变换的反应路径为羧酸盐路径如图4所示,即CO(g)+2H2O(g)→*CO+2*H2O→*CO+2*OH+2*H→*COOH+*OH+2*H→*CO2 +*H2O+*H2 →CO2(g)+H2O(g)+H2(g)。由于H2和CO2的TOF相等,因此图5仅列出了H2的TOF(反应条件为一个大气压下,CO与H2O物质的量之比为1∶1)。总体来说,H2的TOF随反应温度的升高而升高。H2在Ni4/α-MoC(111)和Pd4/α-MoC(111)的TOF偏低。在500 K时催化剂单位活性位点上转换次数约为0和0.056 s-1,这是由于WGS反应过程中反应能垒较高造成的。对于Pt4/α-MoC(111),值得注意的是,400 K时,H2在催化剂单位活性位点上转换次数约为0,这是因为Pt4/α-MoC(111)上CO的脱附能较高(1.07 eV),活性位点被CO所覆盖。随着反应温度的升高,CO的脱附能(500 K下脱附能为0.83 eV)降低,H2在催化剂单位活性位点上的TOF约为6.3 s-1,WGS反应发生。结果表明,*CO的强稳定性不利于WGS反应的进行。当反应温度为500 K时,H2的TOF的排序是:Pt4/α-MoC(111)≫Pd4/α-MoC(111)>Ni4/α-MoC(111)。因此,当3种金属负载在α-MoC载体上时,Pt4/α-MoC(111)催化剂活性最好。同时,其反应活性高于Pt/Al2O3(TOF≈0.7 s-1)和Pt/TiO2(TOF≈0.2 s-1)[35],这表明Pt/α-MoC是WGS反应的高活性催化剂。

图3 WGS反应在Ni4/α-MoC(111),Pd4/α-MoC(111)
上反应势能
Fig.3 Potential energy of WGS on Ni4/α-MoC(111) and
Pd4/α-MoC(111)

图4 WGS反应在Pt4/α-MoC(111)上反应势能
Fig.4 Potential energy of WGS on Pt4/α-MoC(111)

图5 WGS反应在M4/α-MoC(111)上的H2的TOF
Fig.5 H2 TOF for WGS reaction on M4/α-MoC(111)

3 结 论

(1)通过密度泛函理论和动力学蒙特卡洛方法探究了过渡金属Ni,Pd,Pt负载α-MoC催化剂的WGS反应的反应机理和活性。

(2)DFT计算结果发现,在Ni4/α-MoC(111)和Pd4/α-MoC(111)上,WGS反应的反应路径为氧化还原路径为CO(g)+H2O(g)→*CO+*H2O→*CO+*OH+*H→*CO+*O+*2H→*CO2+*H2→CO2(g)+H2(g);在Pt4/α-MoC(111)催化剂上,WGS反应通过羧酸盐路径发生,即CO(g)+2H2O(g)→*CO+2*H2O→*CO+2*OH+2*H→*COOH+*OH+2*H→*CO2+*H2O+*H2→CO2(g)+H2O(g)+H2(g)。

(3)动力学模拟结果表明,Pt4/α-MoC(111)具有较高的催化活性。标准大气压下,反应温度在400~500 K,H2O与CO的物质的量之比为1时,H2的TOF排序:Pt4/α-MoC(111)≫Pd4/α-MoC(111)>Ni4/α-MoC(111),Pt/α-MoC是WGS反应的高活性催化剂。

参考文献(References):

[1] ZHU M,WACHS I E.Iron-based catalysts for the high-temperature water-gas shift (HT-WGS) Reaction:A Review[J].ACS Catalysis,2016,6(2):722-732.

[2] LIU Y M,LIU J T,LIU S H,et al.Reaction mechanisms of methanol synthesis from CO/CO2 hydrogenation on Cu2O(111):Comparison with Cu(111)[J].Journal of CO2 Utilization,2017,20:59-65.

[3] KOBAYASHI K,ATSUMI R,MANAKA Y,et al.Effect of the TiO2 crystal structure on the activity of TiO2-supported platinum catalysts for ammonia synthesis via the NO-CO-H2O reaction[J].Catalysis Science Technology,2019,9(11):2898-2905.

[4] CLAY J P,GREELEY J P,RIBEIRO F H,et al.DFT comparison of intrinsic WGS kinetics over Pd and Pt[J].Journal of Catalysis,2014,320:106-117.

[5] YAO S Y,XU W Q,JOHNSTON-PECK A C,et al.Morphological effects of the nanostructured ceria support on the activity and stability of CuO/CeO2 catalysts for the water-gas shift reaction[J].Physical Chemistry Chemical Physics,2014,16(32):17183-17195.

[6] 任凯,楚金.钴钼催化剂在水煤气变换中的应用[J].化工设计通讯,2018,44(4):7-23.

REN Kai,CHU Jin.Application of cobalt molybdenum catalyst in water gas shift[J].Chemical Engineering Design Communications,2018,44(4):7-23.

[7] ARANIFARD S,AMMAL S C,HEYDEN A.On the importance of the associative carboxyl mechanism for the water-gas shift reaction at Pt/CeO2 interface sites[J].The Journal of Physical Chemistry C,2014,118(12):6314-6323.

[8] MA W P,JACOBS G,KEOGH R A,et al.Fischer-Tropsch synthesis:Effect of Pd,Pt,Re,and Ru noble metal promoters on the activity and selectivity of a 25%Co/Al2O3 catalyst[J].Applied Catalysis,A:General,2012,437/438:1-9.

[9] 朱龙雏,王亦飞,张志丰,等.煤灰和煤焦对气化合成气水煤气变换反应特性的影响[J].煤炭学报,2020,45(9):3293-3300.

ZHU Longchu,WANG Yifei,ZHANG Zhifeng,et al.Effect of coal ash and coal char on gasification syngas water gas shift rection[J].Journal of China Coal Society,2020,45(9):3293-3300.

[10] 史立杰,孙玉琢,李晨佳,等.变换催化剂的密度泛函理论研究进展[J].工业催化,2019,27(5):11-15.

SHI Lijie,SUN Yuzhuo,LI Jiachen,et al.Progress indensity functional theory study of shift catalysts[J].Industrial Catalysis,2019,27(5):11-15.

[11] 张中怀,陈韩,公丹丹,等.K掺杂对Co-CeO2催化剂逆水煤气变换反应性能的影响[J].广州化工,2020,48(14):50-52.

ZHANG Zhonghuai,CHEN Han,GONG Dandan,et al.Influence of K doping on the reaction performance of Co-CeO2 catalyst in reverse water-gas shift reaction[J].Guangzhou Chemical Industry,2020,48(14):50-52.

[12] 苑慧敏,王天成,张永军,等.Fe2O3对CuO/CeO2水煤气变换催化剂的改性研究[J].天然气化工,2019,44(1):28-29,35.

YUAN Huimin,WANG Tiancheg,ZHANG Yongjun,et al.Effect of precipitation temperature on activity and thermal stability of CuO/CeO2 catalyst for water gas shift reaction[J].Natural Gas Chemical Industry,2019,44(1):28-29,35.

[13] 张燕杰,陈崇启,詹瑛瑛,等.Y修饰CuO/ZrO2催化剂高效催化水煤气变换反应制氢[J].燃料化学学报,2017,45(9):1137-1145.

ZHANG Yanjie,CHEN Chongqi,ZHAN Yingying,et al.Highly active Y-promoted CuO/ZrO2 catalysts for the production of hydrogen through water-gas shift reaction[J].Journal of Fuel Chemistry and Technology,2017,45(9):1137-1145.

[14] 范言语,马骏驰,殷玲,等.ZrO2修饰的 CuO/Fe2O3水煤气变换催化剂的性能测试与表征[J].工业催化,2016,24(1):34-40.

FAN Yanyu,MA Junchi,YIN Ling,et al.Catalytic performance and characterization of ZrO2-modified CuO/Fe2O3 catalysts in water-gas shift reaction[J].Inoustrial Catalysis,2016,24(1):34-40.

[15] SABNIS K D,CUI Y R,AKATAY M C,et al.Water-gas shift catalysis over transition metals supported on molybdenum carbide[J].Journal of Catalysis,2015,331:162-171.

[16] HENRY H,WU H,CHEN J G.Surface chemistry of transition metal carbides[J].Chemical Reviews,2005,105(1):185-212.

[17] RODRIGUEZ J A,ILLAS F.Activation of noble metals on metal-carbide surfaces:Novel catalysts for CO oxidation,desulfurization and hydrogenation reactions[J].Physical Chemistry Chemical Physics,2012,14(2):427-438.

[18] YAO S,ZHANG X,ZHOU W,et al.Atomic-layered Au clusters on Au-MoC as catalysts for the low-temperature water-gas shift reaction[J].Science,2017,357(6349):389-393.

[19] ZOU X Y,MI L,ZUO Z J,et al.DFT study the water-gas shift reaction over Cu/α-MoC surface[J].Journal of Molecular Modeling,2020,26(9):237.

[20] KRESSE G,FURTHMULLER J.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J].Physical Review B,1996,54,11169-11186.

[21] BLOCHL P E.Projector augmented-wave method[J].Physical Review B,1994,50(24):17953-17979.

[22] KRESSEG,HAFNER J.Ab initio molecular dynamics for liquid metals[J].Physical Review B,1993,47:558-561.

[23] PERDEW J P,BURKE K,ERNZERHOF M.Generalized gradient approximation made simple[J].Physical Review Letters,1996,77(18):3865-3868.

[24] POSAD-APEREZ S,VINES F,RODRIGUEZ J A,et al.Structure and electronic properties of Cu nanoclusters supported on Mo2C(001) and MoC(001) surfaces[J].The Journal of Chemical Physics,2015,143:114704.

[25] HENKELMAN G,UBERUAGA B P,JONSSON H.A climbing image nudged elastic band method for finding saddle points and minimum energy paths[J].The Journal of Chemical Physics,2000,113(22):9901-9904.

[26] MILMAN V,WINKLER B,WHITE J A,et al.Electronic structure,properties,and phase stability of inorganic crystals:A pseudopotential plane-wave study[J].International Journal of Quantum Chemistry,2000,77(5):895-910.

[27] GUILLERMET A F,HAGLUND J,GRIMVALL G.Cohesive properties and electronic structure of 5d-transition-metal carbides and nitrides in the NaCl structure[J].Physical Review B,Condensed Matter,1993,48(16):11673-11684.

[28] 陈磊,倪刚,韩波,等.Fe3O4(111)面上的水煤气变换反应机理[J].化学学报,2011,69(4):393-398.

CHEN Lei,NI Gang,HAN Bo,et al.Mechanism of water gas shift reaction on Fe3O4(111) surface[J].Acta Chimica Sinica,2011,69(4):393-398.

[29] 毛江洪,倪哲明,潘国祥,等.Cu催化水煤气的变换反应机理[J].物理化学学报,2008,24(11):2059-2064.

MAO Jianghong,NI Zheming,PAN Guoxiang,et al.Mechanism of the copper-catalyzed water gas shift reaction[J].Acta Physico-chimica Sinica,2008,24(11):2059-2064.

[30] 梁湦,何秋月,孙宝珍.Cu2O(111)催化水煤气变换反应机理的理论研究[J].分子催化,2017,31(6):553-566.

LIANG Sheng,HE Qiuyue,SUN Baozhen.Reaction mechanisms of WGSR Catalyzed by Cu2O(111):A theoretical study[J].Journal of Molecular Catalysis,2017,31(6):553-566.

[31] POUR A N,TAYYARI S F.Water-gas-shift reaction over nickel catalysts:DFT studies and kinetic modeling[J].Structural Chemistry,2019,30(5):1843-1852.

[32] CLAY J P,GREELEY J P,RIBEIRO F H,et al.DFT comparison of intrinsic WGS kinetics over Pd and Pt[J].Journal of Catalysis,2014,320:106-117.

[33] SHEN V K,SIDERIUS D W,KREKELBERG W P,et al.NIST standard reference simulation website,NIST standard reference database number 173.National institute of standards and technology,Gaithersburg,MD[EB/OL].(2017-09-01)[2021-04-07].https://webbook.nist.gov/chemistry/.

[34] ZUO Z,LIU S,WANG Z,et al.Dry Reforming of Methane on Single-Site Ni/MgO Catalysts:Importance of Site Confinement[J].ACS Catalysis,2018,8(10):9821-9835.

[35] PAZMINO J H,SHEKHAR M,WILLIAMS W D,et al.Metallic Pt as active sites for the water-gas shift reaction on alkali-promoted supported catalysts[J].Journal of Catalysis,2012,286:279-286.

Theoretical study for water-gas shift reaction over Ni,Pd and Pt supported on α-MoC surface

SHI Xiao1,2,ZOU Xueyan1,2,HUANG Wei1,2,ZUO Zhijun1,2

(1.State Key Laboratory of Clean and Efficient Coal Utilization,Taiyuan University of Technology,Taiyuan 030024,China; 2.Key Laboratory of Coal Science and Technology of Ministry of Education,Taiyuan University of Technology,Taiyuan 030024,China)

Abstract:Hydrogen energy is regarded as the most promising clean energy in the 21st century due to its advantages of clean,efficient and renewable.Water-gas shift (WGS) reaction is a commonly employed reaction in the industry.It is also an important means of hydrogen production while recycling CO waste gas.Besides,it has the dual advantages of environmental governance and energy saving and emission reduction.As a catalyst support,α-MOC shows excellent properties.Pd,Ni and Pt based catalysts are commonly used in the WGS reaction.In order to further understand the role of α-MoC support in the WGS reaction and its catalytic performance under different metal loadings,the reaction mechanism and activities of Ni4/α-MoC (111),Pd4/α-MoC (111) and Pt4/α-MoC (111) were investigated by using density function theory (DFT) and kinetic Monte Carlo (KMC) simulation.The results show that the WGS reaction on Ni4/α-MoC (111) and Pd4/α-MoC (111) is redox mechanism,of which CO combines with atomic oxygen from water decomposition to generate CO2;the WGS reaction on Pt4/α-MoC (111) occurs via the carboxyl pathway,of which carboxylate intermediate is formation from CO reacts with OH produced from water decomposition.Ni4/α-MoC (111) and Pd4/α-MoC (111) show low catalytic activity because of the high energy barrier.At a low temperature,Pt4/α-MoC (111) also shows low a catalytic activity due to strong stability of CO,of which the active sites are covered by CO.With the reaction temperature increasing,the desorption energy of CO decreases,and the catalytic activity increases.At the reaction temperature varied from 400 to 500 K,Pt4/α-MoC (111) shows the highest H2 turnover frequency at 1 atm with a CO:H2O ratio of 1.Compared with the Pt/Al2O3 and Pt/TiO2,Pt/α-MoC shows the highest H2 turnover frequency.

Key words:Water-Gas Shift(WGS);Ni/α-MoC;Pt/α-MoC;Pd/α-MoC;Density Function Theory(DFT);Kinetic Monte Carlo(KMC)

中图分类号:TQ116.2;TQ426

文献标志码:A

文章编号:0253-9993(2021)04-1107-06

移动阅读

收稿日期:20201213

修回日期:20210208

责任编辑:黄小雨

DOI:10.13225/j.cnki.jccs.QJ20.1936

基金项目:国家自然科学基金面上资助项目(21776197);山西重点研发计划(国际科技合作)资助项目(201903D421074);山西省高等学校科技成果转化培育资助项目(2020CG012)

作者简介:史 肖(1993—),男,河北定州人,硕士研究生。E-mail:2713457580@qq.com

通讯作者:左志军(1981—),男,山西繁峙人,教授,博士生导师。E-mail:zuozhijun@tyut.edu.cn

引用格式:史肖,邹雪燕,黄伟,等.Ni,Pd,Pt负载α-MoC催化水煤气变换反应理论[J].煤炭学报,2021,46(4):1107-1112.

SHI Xiao,ZOU Xueyan,HUANG Wei,et al.Theoretical study for water-gas shift reaction over Ni,Pd and Pt supported on α-MoC surface[J].Journal of China Coal Society,2021,46(4):1107-1112.