生物炭+速生植物对工业场地周边土壤镉污染原位修复

陈 浮1,2,朱燕峰1,2,马 静2,刘俊娜1,于昊辰1,张绍良1

(1.矿山生态修复教育部工程研究中心,江苏 徐州 221116; 2.中国矿业大学 低碳能源研究院,江苏 徐州 221008)

摘 要:黄河流域许多地区由于规划不科学、环保措施不足、监管不严等原因,工业场地往往与农田直接镶嵌,极易造成周边土壤重金属污染。为高效快速低成本修复工业场地周边大范围农田土壤镉污染,选择河南省新乡市凤泉区大块镇工业聚集区周边受污染农田开展大田修复实验,利用2种速生植物3连茬种植(即小白菜-黑麦菜-小白菜)联合2种生物炭(即杨树皮生物炭(PBC)和硫脲改性杨树皮生物炭(TPBC))原位修复土壤镉污染,测定连茬种植下土壤镉的浸出特性及其化学赋存形态,评估2茬小白菜食用健康风险,并揭示生物炭+速生植物联合修复土壤镉污染的潜力。结果表明:① 添加2%杨树皮生物炭(PBC)和2%硫脲改性杨树皮生物炭(TPBC)在60 d后土壤镉浸出量低于《地表水环境质量标准》(GB3838—2002)规定的III级标准,添加1%TPBC在90 d后土壤镉浸出量低于III级标准。② 连茬第3季修复实验后,与CK比,施用1%和2%TPBC的土壤残渣态镉分别增加了71.73%和75.75%;弱酸溶态镉分别下降了130.86%和160.62%。添加1%和2%PBC的土壤残渣态镉分别增加了45.82%和50.07%。弱酸溶态镉分别下降了56.34%和109.27%。联合修复可使弱酸溶态镉和可还原态镉向可氧化态镉和残渣态镉转化,有效降低镉的生物可利用性。③ 联合修复可在90 d内将小白菜的食用健康风险降至人体可接受的阈值。由此认为,生物炭+速生植物联合可减少土壤镉浸出量,有效降低镉的生物可利用性,减少镉在小白菜中的转运。“生物炭+速生植物”修复技术克服了原位修复土壤镉污染低效耗时难题,为大范围高效快速低成本原位修复工业场地土壤污染提供了技术支撑。

关键词:工业场地;镉污染;生物炭;速生植物;原位修复;联合修复

全球范围内采矿活动、工业生产和农用化学品的过度使用,使得环境中镉(Cd)持续积累,严重威胁着环境质量和公众健康[1-2]。镉离子极难被生物降解,并可在环境和人体中不断地积累,极易损害人体的内脏器官和组织[3-5],已被联合国列为首要的有害重金属元素之一[6]。2014年《全国土壤污染状况调查公报》显示,土壤镉含量点位超标率为7.0%[7]。全国9个主要稻米产区大米镉超标占10.3%[8],受到镉污染的土地超过2×105 km2[9],这些土壤镉污染多与采矿、冶炼、加工等工业活动密切相关。黄河流域是我国传统的煤炭、石化、电力、钢铁、有色冶金、建材等生产基础,一些省份重工业比重甚至超过70%[10]。一些地区由于规划不科学、环保措施不足、监管不严等原因,工业场地往往与农田直接镶嵌,加剧了周边农田土壤重金属污染风险[11-12]。近几年黄河中下游土壤污染事件频发,多与当地工业场地活动有关[13],严重威胁当地生态环境安全和公众的健康,因此,开发高效快速低成本工业场地土壤镉污染原位修复技术十分迫切。

工业场地修复包含物理修复(如掩埋、蒸发、洗涤等)、化学修复(如电渗析、超滤、溶剂提取等)、原位稳定和植物修复等方法[14-16],但这些方法均存在着不足。如:物理方法经济成本高、能耗大[17];化学方法易产生二次污染[18];原位稳定和植物修复耗时长、修复重金属浓度低[19-20]。相比而言,原位稳定和植物修复较为经济环保,但仍存在低效耗时这一技术障碍。近年来生物炭材料在土壤重金属的固定与吸附中表现出极大的潜力,已被证明可有效降低工业场地土壤重金属离子的迁移率[21]。YOU等[22]发现松木生物炭对尾矿土壤Cu,Mo,Au污染具有显著的修复作用。JAIN等[23]发现在酸性煤矸石中添加柠檬草生物炭,可显著地降低矿渣中Al,Cr,Cu,Fe和Pb的金属离子浓度。XU等[24]报道了坚果果壳生物炭使土壤中镉的生物利用度降低了49.0%。生物炭廉价易得,吸附效率高且性能稳定,因此被广泛应用于土壤污染物的原位修复[25-26]。植物修复技术利用植物的吸收、挥发、转化和降解等作用清除环境中的污染物质,一次性修复面积大,效果稳定,是一种绿色环保的土壤原位修复技术[27]。此外,应用适宜的作物和种植制度,可以有效地改善土壤肥力、提高农产品产量、耐重金属作物产量[28]。因此,将生物炭和植物修复的优点充分结合,对工业场地周边大范围土壤镉污染的快速高效低成本原位修复意义十分重大。

杨树皮生物炭和硫脲改性杨树皮生物炭对土壤中镉离子的固定能力已被证实十分有效[29]。黑麦草也是镉污染修复中常用植物[30],它生长迅速、根系发达、生物量大,对重金属污染具有良好的耐受性[31]。小白菜生长期短,可连续种植,是最为广泛的蔬菜品种[32]。为实现工业场地周边土壤镉污染的快速高效低成本原位大范围修复,本研究选取PBC和TPBC两种生物炭,并与小白菜-黑麦草-小白菜3季连茬种植大田试验联合原位修复黄河下游新乡市凤泉区大块镇工业聚集区周边农田土壤镉污染。本研究主要目的:① 测定小白菜-黑麦草-小白菜连茬种植下土壤镉的浸出特性及其化学赋存形态;② 检测2次小白菜季中植物根部和地上部的镉含量,评价小白菜食用安全性;③ 揭示土壤镉形态变化的机制,并评估联合修复的潜力,为工业场地土壤镉污染的控制和高效快速低成本原位修复提供技术支撑。

1 材料与方法

1.1 研究区概况

本研究选择黄河下游新乡市凤泉区大块镇工业聚集区(113.82E,35.38°N)周边农田土壤为研究对象。该区属温带大陆性季风气候,年均气温为13.9~14.6 ℃,年均降水为580~640 mm,主要种植制度为夏玉米-冬小麦[33]。采用梅花5点法采集0~20 cm表土1 000 g,混合均匀装入密封袋中带回实验室。经风干、均质、筛分,以去除植物根系等杂质后测定基本理化性状。具体理化性状见表1。该区集中了大量的电池产业、电器制造和化工产业,地下水、土壤及作物均已受到不同程度的镉污染[34]。土壤样品总镉质量分数为21.10 mg/kg,为单一污染源,超过《食用农产品产地环境质量评价标准》(HJ/T 332—2006)的70.3倍。

表1 农田土壤基本理化性质
Table 1 Physicochemical properties of farmland soil

pH电导率/(mS·cm-1)有机质质量分数/(g·kg-1)全氮质量分数/(g·kg-1)总镉质量分数/(mg·kg-1)质量分数/%黏粒粉粒沙粒6.85±0.410.20±0.0210.3±0.566.85±0.410.21±0.0231.60±1.0239.21±1.5829.19±1.33

1.2 生物炭制备

生物炭以意大利杨树皮为原料,在600 ℃管式炉中热解2 h,热解在氩气气氛下进行,炉内升温速率为5 ℃/min,制得的生物炭记为PBC。改性生物炭是将等质量的意杨树皮和硫脲混合按上述热解方法制得,记为TPBC,详细制备方法参见ZHU等[35]的研究。生物炭的理化性质见表2。

表2 生物炭的理化性质
Table 2 Physicochemical properties of biochar

生物炭pH电导率/(mS·cm-1)灰分/%比表面积/(m2·g-1)平均孔径/nm总镉质量分数/(mg·kg-1)PBC9.920.3841.682.771.940.04TPBC10.850.4347.715.703.420.06

1.3 实验设计与样品分析

大田实验采用2 m×2 m试验小区(图1),在实验前6个月开始均匀田间土壤,并将PBC和TPBC按1%,2%的质量比施用到土壤中,充分混匀。不添加生物炭的土壤作为对照样(CK)。实验样地外设置宽1 m的保护行,相邻小区之间埋置深度80 cm的防渗板。小白菜和黑麦草种子分别购自株洲市农之子种业有限公司和江苏正大草业公司。播种前用2%的H2O2进行消毒,2020-05-31—08-31共进行了小白菜-黑麦草-小白菜3季连茬种植。每个生长季持续时间为30 d,每个处理组设置3个重复。

图1 实验设计与样品采集
Fig.1 Experimental design and sample collection

每个生长季的第30天收获植物,先用自来水去泥,再用蒸馏水洗净。将根茎叶分开,在105 ℃烘箱中杀青30 min后在75 ℃温度下烘干至恒重。小白菜不同部位镉质量分数按照《食用农产品产地环境质量评价标准》(HJ/T 332—2006)测定[36],即将烘干后小白菜研磨经HNO3-HClO4消化,采用电感耦合等离子体质谱仪(ICP-MS)分析镉质量分数。植株收获后立即采集0~20 cm表土,在室温下风干,去除砾石和植物根须,经研磨过100目筛,再经HCl-HNO3-HF消解,用ICP-MS分析土壤中镉的总质量分数[37]。采用BCR四步顺序提取法测定了土壤样品中镉的形态:弱酸溶态、可还原态、可氧化态和残渣态[37]。采用毒性特征浸出法(TCLP)测定了浸出液中镉含量[38]。重复样品中的相对标准偏差(RSD)小于10%。实验中所用试剂均为优级纯。

1.4 镉生物富集系数估算

植物的重金属富集系数是一种表征土壤与植物间重金属转移行为的重要指标。生物富集系数用来评估镉从土壤转移到植物的效率,具体计算公式为

(1)

式中,BCF为从土壤转移到植物根部的富集系数;BAC为从土壤转移到植物地上部的富集系数;mroots,mshoots分别为植物根部和植物地上部的镉质量分数;msoil为土壤中总的镉含量。

1.5 健康风险评价估算

重金属可以摄食、呼吸以及皮肤接触3种途径进入人体,进而对人体造成危害。由于小白菜主要通过摄食途径进入人体,因此笔者考虑通过摄食途径进入人体的重金属对人体的健康风险。通过USEPA推荐的健康风险评价模型[39],评价食物摄入小白菜诱发的健康风险。计算公式为

(2)

式中,DAD为通过食用蔬菜摄取的日均重金属剂量,mg/(kg·d);C为小白菜地上部的镉的质量分数,mg/kg;I为小白菜的日均摄入量,g/d;t为暴露持续时间,a;f为暴露频率,d/a;W为体质量,kg;tA为重金属平均暴露时间,d;DRf为非致癌重金属长期日摄入参考剂量,mg/(kg·d);H为总非致癌风险指数。具体参数见表3。

表3 健康风险评价参数
Table 3 Meaning of health risk assessment parameters

参数参数取值儿童成年男性成年女性I/(g·d-1)231.5301.4301.4t/a16.070.070.0f/(d·a-1)365.0365.0365.0W/kg32.766.157.8tA(非致癌)/d365t365t365tDRf/(mg·(kg·d)-1)1.00×10-31.00×10-31.00×10-3

1.6 数据统计与分析

所有分析数据以3次重复的平均值±标准差计算。采用SPSS 22.0和Excle进行统计学分析。采用单因素(one-way ANOVA)方差分析检验处理间的差异显著性,平均值多重比较统计学检验采用最小显著极差法(LSD)。图像及表格中的数据通过Origin2016软件处理获得。冗余分析(RDA)使用Canoco软件,用来探明联合修复对植物镉含量的影响。

2 结果与分析

2.1 不同处理对土壤镉浸出量的影响

生物炭与速生植物连茬3季后土壤镉浸出量变化如图2所示(注:C1,C2,C3分别代表第1次、第2次和第3次种植。大写字母表示同一处理组中不同种植次数之间p<0.05下差异显著;小写字母表示同一次种植中不同处理组之间p<0.05下差异显著。下同)。对照组(CK)的镉浸出量略有降低,但降幅不显著。与CK相比,两个生物炭处理组对镉的稳定化效果较好,TPBC效果优于PBC。添加2%TPBC处理组的镉浸出量较1%处理组分别降低了63.38%,295.02%和333.89%,添加2%PBC处理组的镉浸出量较1%处理组分别降低了72.61%,438.21%和298.28%。可见,镉浸出量随着生物炭添加量的增加而降低。从修复时间上看,添加1%的TPBC在连茬第3季结束后可将镉的浸出量降至0.1 mg/kg以下,但仍未满足场地修复镉浸出量的III级标准(GB3838—2002,0.005 mg/L,图2中红线代表Ⅲ级标准);而2%的PBC和TPBC处理组在连茬第2季修复实验可满足此标准。

图2 生物炭与速生植物轮作对镉浸出量的影响
Fig.2 Effect of rotation of biochar and fast-growing
plants on Cd leaching concentration

2.2 不同处理对土壤镉化学组成的影响

采用BCR连续提取法测定了土壤中镉的化学形态(图3),其中弱酸溶态镉是最易被生物利用的形态;残渣态可将镉固定在土壤晶格中不被生物利用,是最稳定的形态。结果显示:① 连茬第3季修复实验后,与CK比,施用1%和2%TPBC的土壤残渣态镉分别增加了71.73%和75.75%;弱酸溶态镉分别下降了130.86%和160.62%,可见,随着TPBC添加量的增加土壤残渣态镉比例增加,弱酸溶态镉比例显著降低。② 相同的趋势也出现在PBC处理组,与CK比,添加1%和2% PBC的土壤残渣态镉分别增加了45.82%和50.07%。弱酸溶态镉分别下降了56.34%和109.27%。残渣态镉比例随PBC添加量增加变化不明显而弱酸溶态镉显著下降。PBC处理组弱酸溶态镉降幅较TPBC处理组低,这表明TPBC较PBC能更有效降低土壤镉的生物可用性。③ 随着连茬次数的增加,土壤中镉的各形态比例变化趋势相近,即由弱酸溶态镉和可还原态镉向可氧化态镉和残渣态镉转化,说明添加生物炭能有效降低镉的生物可利用性。

图3 生物炭与速生植物轮作对镉赋存形态的影响
Fig.3 Effects of rotation of biochar and fast-growing
plants on the species distribution of Cd

2.3 植物的重金属积累和转移系数

不同处理组小白菜组织中镉质量分数如图4所示。添加PBC和TPBC显著降低了小白菜根部和地上部的镉质量分数。连茬第3季修复后,添加量1%的PBC处理组小白菜根部和地上部镉质量分数分别降低到0.562,0.288 mg/kg,添加量1%TPBC处理组分别降低到0.268,0.117 mg/kg;添加量2%的PBC处理组小白菜根部和地上部镉质量分数分别降低到0.557,0.141 mg/kg,添加量2%TPBC处理组分别降至0.081,0.020 mg/kg,可知小白菜组织中镉质量分数随着生物炭施用量的增加而减少。根据《食品安全国家标准 食品中污染物限量》(GB2762—2017)中叶菜蔬菜中镉限量值0.2 mg/kg,添加1%TPBC,2%的PBC和TPBC均能使小白菜地上部镉质量分数降至国家标准限值以下。根据富集系数变化可以看出,随着连茬次数的增加,小白菜从土壤中吸收镉质量分数依次降低,印证了生物炭和黑麦草对土壤镉生物可利用性的降低作用。

图4 小白菜组织中的镉质量分数与转移系数
Fig.4 Content and transfer coefficient of Cd in plant tissues

2.4 健康风险评价

生物炭联合速生植物修复后,为了评估镉所产生的人体健康风险,采用危险系数法对儿童和成人通过摄食蔬菜产生的健康风险进行评价(表4)。当健康风险指数HQ<1时,表明通过摄食暴露重金属的健康风险低;当HQ>1,表明存在潜在的健康风险;当HQ>10,表明存在极高的慢性风险[40]。摄食蔬菜产生的健康风险顺序为儿童>成年女性>成年男性,添加2%生物炭组的HQ值均小于添加1%生物炭组,说明高剂量的生物炭能更有效地降低小白菜的食用健康风险。连茬第1季修复后,所有处理组的HQ值均大于1,因此食用此阶段小白菜摄入的镉对所有人群都具有较高的风险。值得注意的是,第1次修复后CK组儿童的HQ值均大于10,这表明儿童食用此阶段的小白菜存在较高的慢性风险。连茬第3季修复后,1%TPBC,2%PBC和2%TPBC处理组所有年龄段的HQ值均小于1,说明此添加量的生物炭联合速生植物轮作3次后,可在短时间内有效降低食用小白菜摄入镉诱发的健康风险。CHEN等[41]在添加钼渣的石灰性土壤中引入腐殖酸,研究其对小白菜生长性能的影响时发现,低用量(0.5%)腐殖酸降低食用小白菜中微量金属的健康风险,而较高腐植酸施用量不利于降低小白菜的食用健康风险。JAIN等[23]证明在酸性煤矸石中添加柠檬草生物炭后可减少假马齿苋的食用健康风险。

表4 连茬后小白菜的可食用性健康风险指数HQ
Table 4 Edible health risk index of Chinese cabbage after continuous cropping

生物炭儿童第1次第3次成年男性第1次第3次成年女性第1次第3次1%CK11.1710.157.206.548.237.481%PBC7.941.695.751.226.581.401%TDBC5.330.893.430.643.920.742%CK10.629.546.846.147.827.032%PBC4.660.833.370.533.860.612%TPBC3.460.142.230.092.550.10

2.5 土壤-植物中镉浓度之间的相关关系

RDA结果表明,土壤镉化学形态(弱酸溶态,可还原态,可氧化态,残渣态)、土壤镉浸出量、小白菜根系和地上部镉含量之间存在的相关性。小白菜地上部对金属镉的吸收和积累主要受残渣态镉和镉浸出浓度的影响。RDA结果显示,在生物炭和速生植物的影响下,植物金属Cd含量的变异性为97.22%(图5)。残渣态镉和小白菜地上部镉含量有较强的负相关性,土壤镉浸出量和小白菜地上部镉含量有较强的正相关性。这表明,残渣态镉的增加导致小白菜中对重金属吸收降低,同时也伴随着土壤浸出镉的量的降低。应用生物炭和植物修复通过改变土壤镉化学形态从而影响植物对土壤镉的吸收。此外,沉淀和吸附属性也可能导致小白菜地上部金属积累减少。

图5 RDA揭示土壤镉化学形态、Cd浸出量、小白菜根系和
地上部镉含量之间的关系
Fig.5 RDA revealing the relations between soil Cd species
fraction,TCLP-Cd concentration,Cd in pakchoi root and shoot

3 讨 论

固定和植物吸收是工业场地土壤修复工程中常用技术手段[42],先前研究证实植物修复土壤重金属污染的效果受植物吸附量的控制,亦受土壤基质特性的影响[43]。生物炭固定重金属的时长与效果取决于生物炭的性质。生物炭制备过程中表面形成大量羟基、羧基、羰基等含氧官能团[44],通过表面络合或沉淀方式固定土壤中的镉[45]。此外,生物炭能够提高土壤的pH值,改变土壤环境的性质,如有机质、有效磷等,增加沉淀配合物的形成从而使镉钝化,降低土壤中镉的生物可利用性[46];高的pH使更多的镉离子处于水解状态,更容易吸附到生物炭或土壤上[47]

然而,未经修饰或改性的生物炭往往不具备特异性吸附镉的能力。因此在固定化应用中往往表现出低效率。如,LUO等[48]研究证实玉米基生物炭能使褐土中镉的浸出量降低,但降幅仅为34.6%。TANG等[49]发现水稻秸秆生物炭在淹水条件下镉的浸出量降低率只有25.29%。同时,一些研究也发现单一的植物修复效果欠佳。如,LI等[35]研究发现,当土壤镉质量分数为1.50 mg/kg,生物炭添加量为1%时,小白菜可食用部分的镉质量分数为0.216 mg/kg。HE等[36]发现在土壤镉质量分数为2.22 mg/kg时,小白菜中的镉质量分数为0.275 mg/kg。本研究利用PBC和TPBC联合小白菜-黑麦菜-小白菜连茬种植,可以在短时间(90 d)内原位修复工业场地土壤中的镉污染。由此,可以推测在联合修复过程中土壤镉浸出量与小白菜地上部镉能够在短时间内降至安全阈值之内,最大的可能归功于改性生物炭的特异性固定化作用及黑麦菜的超富集作用(图6)。

图6 生物炭联合速生植物修复场地土壤镉污染
Fig.6 Biochar combined with fast growing plants remediation site soil cadmium pollution

本研究中TPBC克服了PBC的不足,提高了对镉的靶向吸附能力。TPBC中有含有大量的R—C—SH,R—C—SO—CH3,R—C—SOOH等有机硫官能团和硫酸盐等无机硫组分[50]以及含氮的表面官能团(特别是—NH2),均可通过强共价键促进镉的固定[51]。因此,TPBC的固定化能力显著提高。金属镉硫化物在土壤中比镉氧化物更不溶于水、更不容易被氧化。含硫镉化合物的形成,提高了土壤残渣态镉的含量,降低了土壤中镉的生物可利用性[52],减少了重金属向植物地上部分的运输。RDA的分析结果佐证了这一过程。从健康风险评价来看,修复第1次结束后的小白菜会对人体产生较大的食用健康风险,特别是对儿童的使用健康风险更为严重。经过黑麦草对镉的富集作用,小白菜在第3季原位修复后地上部镉含量已降低至可食用标准。利用1%TPBC,2%PBC和2%TPBC在90 d后内将食用小白菜的健康风险降为人体可接受的阈值(HQ=1)。从修复效果来看,2种高剂量的生物炭能够在更短时间内(60 d)缓解土壤镉的生态风险。低剂量的TPBC和高剂量的PBC和TPBC能够在90 d里缓解小白菜的食用健康风险。由此,可认定TPBC联合速生植物连茬种植是实现工业场地土壤镉污染高效快速低成本原位修复的有效技术。

4 结 论

(1)该生物炭+速生植物联合修复技术可有效地缩短工业场地镉污染土壤的修复时间。其中,1%添加量的TPBC与速生植物连茬种植联合修复可在90 d内将污染工业场地土壤镉浸出量降至《地表水环境质量标准》III级标准(GB3838—2002)以下;2%PBC和2%TPBC与速生植物小白菜-黑麦草连茬种植2次(60 d)可将污染工业场地土壤镉浸出量降至《地表水环境质量标准》III级标准以下。

(2)联合修复后土壤镉及化学形态发生显著变化,弱酸溶态镉和可还原态镉含量减少,可氧化态镉和残渣态镉含量增加。

(3)利用1%TPBC,2%PBC和2%TPBC联合小白菜-黑麦菜-小白菜连茬修复降低了土壤中镉的生物可利用性,短期内将小白菜的食用健康风险降到人体可接受的阈值。为此,可认定生物炭联合速生植物连茬种植是实现工业场地土壤镉污染高效、快速、低成本原位修复的有效技术。

参考文献(References):

[1] 王兴明,王运敏,储昭霞,等.煤矸石对铜尾矿中重金属(Zn,Pb,Cd,Cr和Cu)形态及生物有效性的影响[J].煤炭学报,2017,42(10):2688-2697.

WANG Xingming,WANG Yunmin,CHU Zhaoxia,et al.Effects of coal gangue addition on the chemical fraction and bioavailability of heavy metals(Zn,Pb,Cd,Cr and Cu) in copper mine tailings[J].Journal of China Coal Society,2017,42(10):2688-2697.

[2] ZHU Yongqi,WANG Haijiang,LV Xin,et al.Effects of biochar and biofertilizer on cadmium-contaminated cotton growth and the antioxidative defense system[J].Scientific Reports,2020,10(1):20112-20120.

[3] HUANG Danlian,LIU Linshan,ZENG Guangming,et al.The effects of rice straw biochar on indigenous microbial community and enzymes activity in heavy metal-contaminated sediment[J].Chemosphere,2017,174:545-553.

[4] 马文超,刘媛,孙晓灿,等.镉在土壤-香根草系统中的迁移及转化特征[J].生态学报,2016,36(11):3411-3418.

MA Wenchao,LIU Yuan,SUN Xiaocan,et al.Transfer and transformation characteristics of cadmium from soil to Vetiveria zizanioides[J].Acta Ecologica Sinica,2016,36(11):3411-3418.

[5] ZENG Siyan,MA Jing,YANG Yongjun,et al.Spatial assessment of farmland soil pollution and its potential human health risks in China[J].Science of the Total Environment,2019,687(15):642-653.

[6] IRSHAD M K,CHEN Chong,NOMAN A,et al.Goethite-modified biochar restricts the mobility and transfer of cadmium in soil-rice system[J].Chemosphere,2020,242:125152-125164.

[7] 环境保护部.《全国土壤污染状况调查公报》[N],2014.http://www.mee.gov.cn/gkml/sthjbgw/qt/201404/t20140417_270670.htm. 2021-03-31.

[8] SHI Jing,LI Lianqing,PAN Genxing.Variation of grain Cd and Zn concentrations of 110 hybrid rice cultivars grown in a low-Cd paddy soil[J].Journal of Environmental Sciences,2009,21(2):168-172.

[9] ZHOU Huimin,WANG Pan,DE Chen,et al.Short-term biochar manipulation of microbial nitrogen transformation in wheat rhizosphere of a metal contaminated inceptisol from North China plain[J].Science of the Total Environment,2018,640(1):1287-1296.

[10] 彭苏萍,毕银丽.黄河流域煤矿区生态环境修复关键技术与战略思考[J].煤炭学报,2020,45(4):1211-1221.

PENG Suping,BI Yinli.Strategic consideration and core technology about environmental ecological restoration in coal mine areas in the Yellow River basin of China[J].Journal of China Coal Society,2020,45(4):1211-1221.

[11] 王波,毛任钊,曹健,等.海河低平原区农田重金属含量的空间变异性——以河北省肥乡县为例[J].生态学报,2006,26(12):4082-4090.

WANG Bo,MAO Renzhao,CAO Jian,et al.Spatial variability of the heavy metal contents in cropland of the low Hai River Plain:A case study in Feixiang county of Hebei Province[J].Acta Ecologica Sinica,2006,26(12):4082-4090.

[12] 李芳,李新举.鲁西南煤矿区农田耕层重金属分布特征及污染评价[J].煤炭学报,2018,43(7):1990-1998.

LI Fang,LI Xinju.Distribution and pollution assessment of heavy metals in farmland tillage soil at coal mine area of the western-south Shandong Province[J].Journal of China Coal Society,2018,43(7):1990-1998.

[13] 陈兆进,李英军,邵洋,等.新乡市镉污染土壤细菌群落组成及其对镉固定效果[J].环境科学,2020,41(6):2889-2897.

CHEN Zhaojin,LI Yingjun,SHAO Yang,et al.Bacterial community composition in cadmium-contaminated soils in Xinxiang city and its ability to reduce cadmiumbio accumulation in pakchoi(Brassica chinensis L.)[J].Environmental Science,2020,41(6):2889-2897.

[14] ABHISEK M,KUMAR D B,MEENAKSHI A,et al.Porous media transport of iron nanoparticles for site remediation application:A review of lab scale column study,transport modelling and field-scale application[J].Journal of Hazardous Materials,2020,403(5):123443-123457.

[15] LIAO Shiguo,LI Dongwei.Review of contaminated sites remediation technology[J].Advanced Materials Research,2012,414:1-4.

[16] GABRIEL P F.Innovative technologies for contaminated site remediation:Focus on bioremediation[J].Journal of the Air & Waste Management Association,1991,41(12):1657-1660.

[17] CHEN Xuan,HE Hongzhi,CHEN Guikui,et al.Effects of biochar and crop straws on the bioavailability of cadmium in contaminated soil[J].Scientific Reports,2020,10(4):9528-9540.

[18] 赖冬麟,张奇,陈亭亭,等.张家口市某机械厂原址电镀污染场地土壤修复工程实践[J].环境工程,2020,38(6):75-80.

LAI Donglin,ZHANG Qi,CHEN Tingting,et al.Remediation practice of hexavalent chromium and cyanide contaminated soil at the original site of a machineryplant in Zhangjiakou,China[J].Environmental Engineering,2020,38(6):75-80.

[19] HAMID Y,TANG Lin,HUSSAIN B,et al.Efficiency of lime,biochar,Fe containing biochar and composite amendments for Cd and Pb immobilization in a co-contaminated alluvial soil[J].Environmental Pollution,2020,257:113609.

[20] TANG Lin,HAMID Y,ZEHRA A,et al.Endophytic inoculation coupled with soil amendment and foliar inhibitor ensure phytoremediation and argo-production in cadmium contaminated soil under oilseed rape-rice rotation system[J].Science of the Total Environment,2020,748(15):142481.

[21] LEHMANN J,RILLIG M C,THIES J,et al.Biochar effects on soil biota-A review[J].Soil Biology and Biochemistry,2011,43(9):1812-1836.

[22] YOU Fang,DALAL R,HUANG Longbin.Biochar and biomass organic amendments shaped different dominance of lithoautotrophs and organoheterotrophs in microbial communities colonizing neutral copper(Cu)-molybdenum(Mo)-gold(Au) tailings[J].Geoderma,2018,309:100-110.

[23] JAIN S,SINGH A,KHARE P,et al.Toxicity assessment of Bacopa monnieri L.grown in biochar amended extremely acidic coal mine spoils[J].Ecological Engineering,2017,108:211-219.

[24] XU Yilu,SESHADRI B,SARKAR B,et al.Biochar modulates heavy metal toxicity and improves microbial carbon use efficiency in soil[J].Science of the Total Environment,2018,621(15):148-159.

[25] NI Ni,LI Xiaona,YAO Shi,et al.Biochar applications combined with paddy-upland rotation cropping systems benefit the safe use of PAH-contaminated soils:From risk assessment to microbial ecology[J].Journal of Hazardous Materials,2021,404:124123.

[26] YANG Xu,QIN Junhao,LI Jiachun,et al.Upland rice intercropping with Solanum nigrum inoculated with arbuscular mycorrhizal fungi reduces grain Cd while promoting phytoremediation of Cd-contaminated soil[J].Journal of Hazardous Materials,2020,406(15):124325-124338.

[27] LI Na,LIU Rui,CHEN Jianjun,et al.Enhanced phytoremediation of PAHs and cadmium contaminated soils by a Mycobacterium[J].Science of The Total Environment,2021,754(1):141198-141209.

[28] 可欣,周燕,张飞杰,等.污染场地修复药剂安全利用问题及对策[J/OL].环境科学研究:1-13[2021-05-26].https://doi.org/10.13198/j.issn.1001-6929.2020.12.02.

KE Xin,ZHOU Yan,ZHANG Feijie,et al.Problems and countermeasures of safe utilization of agents for contaminated sites[J/OL].Research of Environmental Sciences:1-13[2021-05-26].https://doi.org/10.13198/j.issn.1001-6929.2020.12.02.

[29] ZHU Yanfeng,MA Jing,CHEN Fu,et al.Remediation of soil polluted with Cd in a postmining area using Thiourea-Modified Biochar[J].International Journal of Environmental Research and Public Health,2020,17(20):7654-7667.

[30] ZHANG Shaokang,GONG Xiaofeng,SHEN Zhaoying,et al.Study on remediation of Cd-contaminated soil by thermally modified attapulgite combined with ryegrass[J].Soil and Sediment Contamination:An International Journal,2020,29(6):680-701.

[31] LI Lingling,JIA Zhilei,MA Hang,et al.The effect of two different biochars on remediation of Cd-contaminated soil and Cd uptake by Lolium perenne[J].Environmental Geochemistry and Health,2019,41(5):2067-2080.

[32] MI Baobin,LIU Feng,XIE Lingling,et al.Evaluation of the uptake capacities of heavy metals in Chinese cabbage[J].Ecotoxicology and Environmental Safety,2019:171.

[33] NI Wei,DING Guoyong,LI Yifei,et al.Impacts of floods on dysentery in Xinxiang city,China,during 2004—2010:A time-series Poisson analysis[J].Global Health Action,2014,7(1):23904-23913.

[34] 姜玉玲,阮心玲,马建华.新乡市某电池厂附近污灌农田重金属污染特征与分类管理[J].环境科学学报,2020,40(2):645-654.

JIANG Yuling,RUAN Xinling,MA Jianhua.Heavy metal pollution and classification management of sewage irrigation farmland around a battery factory in Xinxiang,Henan Province[J].Acta Scientiae Circumstantiae,2020,40(2):645-654.

[35] ZHU Yanfeng,LIANG Huageng,YU Ruilian,et al.Removal of aquatic cadmium ions using thiourea modified poplar biochar[J].Water,2020,12(4):1117-1134.

[36] 国家环境保护总局南京环境科学研究所,中国环境科学研究院.食用农产品产地环境质量评价标准(HJ332—2006)[S].

[37] LUO Mingke,LIN Hai,HE Yinhai,et al.The influence of corncob-based biochar on remediation of arsenic and cadmium in yellow soil and cinnamon soil[J].Science of the Total Environment,2020,717(15):137014-137022.

[38] XU Congbin,ZHAO Jiwei,YANG Wenjie,et al.Evaluation of biochar pyrolyzed from kitchen waste,corn straw,and peanut hulls on immobilization of Pb and Cd in contaminated soil[J].Environmental Pollution,2020,261:114133-114141.

[39] S STEVEN C.Implementing probabilistic risk assessment in USEPA superfund program[J].Human and Ecological Risk Assessment:An International Journal,1999,5(4):737-754.

[40] 骆占斌,陈浮,张旺园,等.再生铅厂土壤重金属污染及健康风险评价[J].环境科学与技术,2018,41(4):197-204.

LUO Zhanbin,CHEN Fu,ZHANG Wangyuan,et al.Heavy metal contamination and health risk assessment in the soil surrounding a secondary lead plant[J].Environmental Science & Technology,2018,41(4):197-204.

[41] CHEN Dong,ZHONG Wenmeng,YI Pingchen.Effect of humic acid on seedling growth and trace metal accumulation of pak choi(Brassica chinensis L.) cultivated on molybdenum slag-spiked soil[J].Environmental Science and Pollution Research,2020,28(5):6122-6131.

[42] WANG Xiqing,LYU T,DONG Renjie,et al.Dynamic evolution of humic acids during anaerobic digestion:Exploring an effective auxiliary agent for heavy metal remediation[J].Bioresource Technology,2021,320:124331-134341.

[43] 吴广美,王青玲,胡鹏杰,等.镉污染中性土壤伴矿景天修复的硫强化及其微生物效应[J].土壤,2020,52(5):920-926.

WU Guangmei,WANG Qingling,HU Pengjie,et al.Sulfur assisted cadmium phytoextraction by sedum plumbizincicola and its effect on microbial community in neutral paddy soil[J].Soils,2020,52(5):920-926.

[44] LIU Nianhui,LIAO Peng,ZHANG Jiachao,et al.Characteristics of denitrification genes and relevant enzyme activities in heavy-metal polluted soils remediated by biochar and compost[J].Science of the Total Environment,2020,739(15):139987-139995.

[45] 陈温福,张伟明,孟军,等.生物炭应用技术研究[J].中国工程科学,2011,13(2):83-89.

CHEN Wenfu,ZHANG Weiming,MENG Jun,et al.Researches on biochar application technology[J].Strategic Study of CAE,2011,13(2):83-89.

[46] 李力,陆宇超,刘娅,等.玉米秸秆生物炭对Cd(Ⅱ)的吸附机理研究[J].农业环境科学学报,2012,31(11):2277-2283.

LI Li,LU Yuchao,LIU Ya,et al.Adsorption mechanisms of cadmium(II) on Biochars derived from corn straw[J].Journal of Agro-Environment Science,2012,31(11):2277-2283.

[47] MOHAMED I,ALI M,AHMED N,et al.Cow manure-loaded biochar changes Cd fractionation and phytotoxicity potential for wheat in a natural acidic contaminated soil[J].Ecotoxicology and Environmental Safety,2018,165(15):348-353.

[48] LUO Mingke,LIN Hai,HE Yinhai,et al.The influence of corncob-based biochar on remediation of arsenic and cadmium in yellow soil and cinnamon soil[J].Science of the Total Environment,2020,717(15):137014-137022.

[49] 汤家庆,张绪,黄国勇,等.水分条件对生物炭钝化水稻土铅镉复合污染的影响[J].环境科学,2021,42(3):1185-1190.

TANG Jiaqing,ZHANG Xu,HUANG Guoyong,et al.Effect of water regime on Pb and Cd immobilization by biochar in a contaminated paddy soil[J].Environmental Science,2021,42(3):1185-1190.

[50] ZHU Yanfeng,LIANG Huageng,YU Ruilian,et al.Removal of aquatic cadmium ions using thiourea modified poplar biochar[J].Water,2020,12(4):1117-1134.

[51] DESHANI I A,EILHANN E K,METHIKA V,et al.Soil lead immobilization by biochars in short-term laboratory incubation studies[J].Environment International,2019,127:190-198.

[52] CHEN Dun,WANG Xiaobing,WANG Xiaoli,et al.The mechanism of cadmium sorption by sulphur-modified wheat straw biochar and its application cadmium-contaminated soil[J].Science of the Total Environment,2020,714(20):136550-136558.

In-situ remediation of Cd contaminated soil around industrial site by biochar combined with rank vegetation

CHEN Fu1,2,ZHU Yanfeng1,2,MA Jing2,LIU Junna1,YU Haochen1,ZHANG Shaoliang1

(1.Engineering Research Center of Ministry of Education for Mine Ecological Restoration,Xuzhou 221116,China; 2.Low Carbon Energy Institute,China University of Mining and Technology,Xuzhou 221008,China)

Abstract:Due to unscientific planning,insufficient environmental protection,lax supervision and other reasons,some farmland might be easily polluted with heavy metals in most parts of the Yellow River Basin,where the farmland is always directly embedded with industrial sites.In order to explore an efficiently,and cost-effectively remedy for large-scale Cd-contaminated farmland soil around the industrial site,some in-situ remediation experiments were carried out in the Cd contaminated farmland around the industrial agglomeration area of Dakuai Town,Fengquan District,Xinxiang City,Henan Province.Two fast-growing plants,which were planted continuously (Chinese cabbage-rye vegetable-Chinese cabbage),and 2 kinds of biochar (poplar bark Biochar (PBC),and thiourea-modified poplar bark biochar (TPBC)) were used in the field experiment.The leaching characteristics of soil Cd and the chemical occurrence form under continuous planting were measured.Moreover,the health risks of Chinese cabbage were assessed,the potential capacity of repairing Cd polluted soil,with the remediation mode of biochar plus fast-growing plants,was also revealed.The results showed that:① after 60 days,the leaching concentration of soil Cd when adding 2% PBC and 2% TPBC was lower than the level III standard specified in “Environmental Quality Standard for Surface Water”(GB3838—2002).The soil Cd leaching content with the addition of 1% TPBC after 90 days was lower than the level III standard.② Compared with CK,the 1% and 2% TPBC increased the residual cadmium by 71.73% and 75.75%,and decreased the acid-soluble cadmium by 130.86% and 160.62%,respectively.The 1% and 2% PBC increased the residual cadmium by 45.82% and 50.07%,respectively.The content of acid-soluble cadmium decreased by 56.34% and 109.27%,respectively.The combined remediation could effectively reduce the bioavailability of Cd,through transforming weakly acid-soluble cadmium and reducible cadmium,to oxidizable cadmium and residual cadmium.③ Joint remediation can also reduce the edible health risk of pakchoi to the threshold within 90 days,which was acceptable to the human body.In a word,the combination of biochar and fast-growing plants can reduce the leaching concentration of cadmium in soil,effectively reduce the bioavailability of cadmium,and reduce the transport of cadmium in Chinese cabbage.The remediation technology using “biochar+fast-growing plant” successfully overcomes the difficulties of inefficient and time-consuming in-situ remediation of soil Cd pollution.This technology also provides technical support for the efficient,and low-cost in-situ remediation of large-scale contaminated soil in industrial sites.

Key words:industrial site;cadmium pollution;biochar;quick remediation;in-situ remediation;joint remediation

中图分类号:TD88

文献标志码:A

文章编号:0253-9993(2021)05-1477-10

移动阅读

收稿日期:20210125

修回日期:20210222

责任编辑:韩晋平

DOI:10.13225/j.cnki.jccs.ST21.0183

基金项目:国家自然科学基金资助项目(51974313,41907405);江苏省自然科学基金资助项目(BK20180641)

作者简介:陈 浮(1974—),男,江苏射阳人,教授,博士生导师。 Tel:0516-83591309,E-mail:chenfu@cumt.edu.cn

引用格式:陈浮,朱燕峰,马静,等.生物炭+速生植物对工业场地周边土壤镉污染原位修复[J].煤炭学报,2021,46(5):1477-1486.

CHEN Fu,ZHU Yanfeng,MA Jing,et al.In-situ remediation of Cd contaminated soil around industrial site by biochar combined with rank vegetation[J].Journal of China Coal Society,2021,46(5):1477-1486.