张琳琳,赖枫鹏,董银涛,等. 盐水层地质参数对CO2封存效果的评价[J]. 煤炭学报,2024,49(9):3932−3943. DOI: 10.13225/j.cnki.jccs.2023.1312
引用本文: 张琳琳,赖枫鹏,董银涛,等. 盐水层地质参数对CO2封存效果的评价[J]. 煤炭学报,2024,49(9):3932−3943. DOI: 10.13225/j.cnki.jccs.2023.1312
ZHANG Linlin,LAI Fengpeng,DONG Yintao,et al. Evaluation of CO2 storage effected by geological parameters of brine layer[J]. Journal of China Coal Society,2024,49(9):3932−3943. DOI: 10.13225/j.cnki.jccs.2023.1312
Citation: ZHANG Linlin,LAI Fengpeng,DONG Yintao,et al. Evaluation of CO2 storage effected by geological parameters of brine layer[J]. Journal of China Coal Society,2024,49(9):3932−3943. DOI: 10.13225/j.cnki.jccs.2023.1312

盐水层地质参数对CO2封存效果的评价

Evaluation of CO2 storage effected by geological parameters of brine layer

  • 摘要: 在二氧化碳捕集、利用与封存技术中,盐水层封存CO2由于具有分布面积广和封存潜力大等多重优势,逐渐成为应对全球气候变暖、实现2050年世界净零目标、减少CO2排放的有效方法。为提高盐水层中CO2的封存效果,以国内外现有的相关地质封存项目数据为基础,采用Petrasim软件中的TOUGHREACT/ECO2N模块,选取CO2溶解质量和气态CO2饱和度为评价指标,通过数值模拟方法,从盐溶液体系和储层物性参数2个方面,揭示地层盐水盐度、地层盐水组分、地层压力、地层温度和渗透率5个地质参数对盐水层CO2封存的影响机制,并定量评价CO2封存效果。结果表明:① 各地质参数主要通过改变CO2、地层盐水的密度和黏度、CO2溶解度以及CO2–盐水–岩石的化学反应等,进而控制地层流体的溶解度、流动性和传质性;② CO2的溶解度和地层盐水密度分别随盐度的增加而降低、增大,但前者受其影响程度更大,从而盐度对CO2的溶解表现出抑制作用,因此低盐度的盐水层更有助于增加CO2封存量及提高埋存安全性;③ 根据苏林分类法得到的4种盐溶液组分中,CaCl2水型对应的CO2溶解质量略低于其他3种水型,但整体上不同盐溶液组分对CO2封存效果影响不大;④ 在CO2溶解度和气液两相黏度比的共同作用下,CO2溶解质量随压力和温度的增大而减少,气态CO2饱和度变化相反;渗透率对气体流动性和运移距离起直接控制作用,因此地层压力和温度越低,渗透率越大的盐水层越有利于CO2封存。

     

    Abstract: In the practice of carbon dioxide capture, utilization and storage, the storage of CO2 in salt water layer has gradually become an effective way to deal with global warming, achieving the goal of net zero in 2050 and reducing CO2 emissions due to its multiple advantages such as wide distribution area and large storage potential. TOUGHREACT/ECO2N module in the Petrasim software was adopted to improve the storage efficiency of CO2 in brine reservoirs. Based on the existing data of relevant geological storage projects in China and other countries, the numerical simulation method was used to evaluate the CO2 dissolution quality and gaseous CO2 saturation. The influence mechanism of five geological parameters of formation brine salinity, composition of formation brine, formation pressure, formation temperature and permeability on CO2 sequestration was revealed, and the effect of CO2 sequestration was quantitatively evaluated. The results show that: ① the geological parameters control the solubility, fluidity and mass transfer of formation fluids by changing the density and viscosity of CO2, formation brine, CO2 solubility and the chemical reaction of CO2-brine and rock. ② The solubility of CO2 and the density of formation brine decrease and increase with the increase of salinity respectively, with the former being mostly affected. The salinity has an inhibitory effect on the dissolution of CO2. Therefore, the brine layer with low salinity is more conducive to increasing the storage capacity of CO2 and improving the storage safety. ③ Among the four salt solution components obtained according to the Sulin classification method, the CO2 dissolution quality corresponding to CaCl2 water type is slightly lower than that of the other three water types. Overall, different salt solution components have little influence on the effect of CO2 storage. ④ Under the combined effect of CO2 solubility and gas-liquid two-phase viscosity ratio, the dissolved mass of CO2 decreases with the increase of pressure and temperature, while the gaseous CO2 saturation changes inversely. Permeability plays a direct role in controlling the gas mobility and migration distance. Therefore, with the lower formation pressure and temperature, the brine layer with higher permeability is more conducive to CO2 storage.

     

/

返回文章
返回