期刊订阅
广告服务
  • 中文
    EN
  • ISSN:0253-9993
  • CN: 11-2190/TD

《煤炭学报》

当前位置:首页 > 论文管理 > 煤矸双能X射线图像多维度分析识别方法研究

煤矸双能X射线图像多维度分析识别方法研究

作者(Author):

  • 郭永存
  • 何磊
  • 刘普壮
  • 王希

作者单位:

  • 深部煤矿采动响应与灾害防控国家重点实验室
  • 安徽理工大学 矿山智能装备与技术安徽省重点实验室
  • 矿山智能技术与装备省部共建协同创新中心
  • 安徽理工大学 机械工程学院

关键词:

  • 双能X射线
  • 煤矸分选
  • 物质属性R值
  • 多维度分析
  • 特征选择
  • 图像识别
  • 摘要
  • 论文图表
  • 相关文章
  • 引用格式

环境适应能力强、识别精度高是有效分离煤和矸石的前提。采用双能X射线透视煤和矸石并成像,避免了粉尘、光照强度和物料表面等外界因素影响。但双能X射线探测器采集射线能量数据存在余晖效应、厚度效应和射束硬化效应等缺陷。为降低缺陷影响,提高煤和矸石识别率,提出一种联合R值图像与高、低能图像特征对煤和矸石进行多维度分析的方法。首先基于双能X射线采集系统获取高、低能图像,并利用比值法得到R值图像;然后针对所获取的三种图像,研究煤和矸石密度及灰分含量等关键物性参数与图像特征关系,据此设计特征提取方案,共计提取8个特征参量,形成一种强特征组合;最后采用Relief算法度量每个特征参量的重要性,进而设计分类试验。以不同地区肥煤、焦煤、气煤和矸石为试验对象,观察剔除权重较低的特征后,分类模型准确率,发现以特征组合[ Rc, μlc, μl, R]为输入,PSO-SVM分类模型对三种煤混合矸石识别效果最佳,识别率为99.4%。结合PSO-SVM分类模型和[ Rc, μlc, μl, R]的特征组合对肥煤、焦煤和气煤分别混合矸石进行识别验证,结果表明:肥煤混合矸石识别率为98.89%,焦煤混合矸石识别率为100%,气煤混合矸石的识别率为99.44%。本方法通过联合多张图像的多个特征,进行多维度分析,发现R值图像特征和高能图像特征对煤和矸石的区分度最好,可有效降低双能X射线缺陷影响,能以较少的特征,实现对不同煤种的较高识别率,优于现有方法。此外,以灰分、密度为参照选取特征阈值,贴合实际需求,减少了工程应用中根据矿区煤质差异进行参数调整的频次,提高了识别模型的泛化能力。


郭永存,何磊,刘普壮,等.煤矸双能X射线图像多维度分析识别方法[J].煤炭学报,2021,46(1):300-309. GUO Yongcun,HE Lei,LIU Puzhuang,et al.Multi dimensional analysis and recognition method of coal and gangue dual energy X ray images[J].Journal of China Coal Society,2021,46(1):300-309.
  • 地址:北京市朝阳区和平街13区煤炭大厦

  • 邮编:100013

  • 编辑部电话:(010)87986411

  • 传真:(010)84262114