Experimental study of hydro-chemical corrosion influence on damage mechanical properties of slate
-
摘要: 海底隧道、地铁等岩体工程的围岩不可避免地遭受水化学腐蚀的影响,这种水-岩作用是影响岩体稳定性的重要因素之一。从宏细观和化学损伤的角度出发,针对大连地铁板岩开展不同水化学溶液(HCl,NaOH,NaCl)的腐蚀试验,测量获得其浸泡过程中的pH值、有效孔隙率、纵波波速的变化规律,以一系列化学反应式初步探讨板岩的水化学腐蚀机制。对比分析了不同溶液下板岩的变形、强度特性和试件破裂形态。基于水化学损伤与纵波波速的经验公式引入水化学损伤变量,进行自编制多场耦合有限元程序的岩石弹塑性应力-化学-损伤(MCD)计算模拟验证。结果表明:①板岩受水-岩作用影响,其峰值强度σc、弹性模量E均有不同程度劣化;②随浸泡时间增加破裂形态逐渐由脆性转向延性;③岩石参数的损伤程度与有效孔隙率和纵波波速之间有明显的非线性、非单调的关系。Abstract: The mass of subsea tunnel and underground engineering suffer from hydrochemical corrosion inevitably. Water-rock interaction is one of the important factors which influence the stability of rock mass. Corrosion tests with different water chemical solutions (HCl,NaOH,NaCl) were carried out in this paper based on the slate of Dalian Metro from the perspective of micro-macro and chemical damage. The pH value,effective porosity and longitudinal wave velocity were measured in the process of soaking. The preliminary discussions were carried on with a series of chemical formula to analyze the slate’s hydrochemistry corrosion mechanism. The deformation characteristics,strength characteristics and fracture morphology of slate under different solutions were comparatively analyzed. Based on the previous experimental formula by experiment between longitudinal wave velocity and hydrochemistry damage,a hydrochemistry damage degree was introduced to carry out a calculation program verification by the independent program of rock elastic-plastic stress-chemical-damage (MCD) more field coupling finite element program. The test results show that:① The slate’s mechanics index include peak intensity (σc) and elastic modulus (E),all have different degree of damage influenced by water-rock effect;② The fracture morphology changes from brittle to ductile gradually with the soak time;③ The damage degree and the effective porosity of rock parameters have non-linear relationship between longitudinal wave velocity.
-
Keywords:
- slate /
- water-rock interaction /
- chemical corrosion /
- uniaxial compression /
- damage /
- MCD coupling
-
-
[1] 冯夏庭. 岩石破裂过程的化学-应力耦合效应[M]. 北京:科学出版社,2010. [2] 梁卫国,张传达. 盐水浸泡作用下石膏岩力学特性试验研究[J]. 岩石力学与工程学报,2010,29(6):1156-1163. Liang Weiguo, Zhang Chuanda. Experimental study of mechanical properties of gypsum saturated in brine[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(6):1156-1163.
[3] 李鹏,刘建. 水化学作用对砂岩抗剪强度特性影响效应研究[J]. 岩土力学,2011,32(2):380-386. Li Peng,Liu Jian. Experimental study for shear strength characteristics of sandstone under water-rock interaction effects[J]. Rock and Soil Mechanics,2011,32(2):380-386.
[4] 王伟,刘桃根,吕军,等. 水岩化学作用对砂岩力学特性影响的试验研究[J]. 岩石力学与工程学报,2012,31(S2):3607-3617. Wang Wei,Liu Taogen,Lü Jun,et al. Experimental study of influence of water-rock chemical interaction on mechanical characteristics of sandstone[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(S2):3607-3617.
[5] 黄明,詹金武. 酸碱溶液环境中软岩的崩解试验及能量耗散特征研究[J]. 岩土力学,2015,36(9):2607-2623. Huang Ming, Zhan Jinwu. Disintegration tests and energy dissipation characteristics of soft rock in acid and alkali solution[J]. Rock and Soil Mechanics,2015,36(9):2607-2623.
[6] 邱恩喜,康景文,郑立宁,等. 成都地区含膏红层软岩溶蚀特性研究[J]. 岩土力学,2015,36(S2):274-280. Qiu Enxi,Kang Jingwen,Zheng Lining,et al. Study of corrosion characters of red-bed soft rock containing saline deposit in Chengdu[J]. Rock and Soil Mechanics,2015,36(S2):274-280.
[7] 丁梧秀,徐桃,王鸿毅,等. 水化学溶液及冻融耦合作用下灰岩力学特性试验研究[J]. 岩石力学与工程学报,2015,34(5):979-985. Ding Wuxiu,Xu Tao,Wang Hongyi,et al. Experimental study of mechanical property of limestone under coupled chemical solution and freezing-thawing process[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(5):979-985.
[8] 丁梧秀,陈建平,徐桃,等. 化学溶液侵蚀下灰岩的力学及化学溶解特性研究[J]. 岩土力学,2015,36(7):1825-1830. Ding Wuxiu,Chen Jianping,Xu Tao,et al. Mechanical and chemical characteristics of limestone during chemical erosion[J]. Rock and Soil Mechanics,2015,36(7):1825-1830.
[9] 朱珍德,刑福东,王思敬. 地下水对泥板岩强度软化的损伤力学分析[J]. 岩石力学与工程学报,2004,23(S2):4739-4743. Zhu Zhende,Xing Fudong,Wang Sijing. Analysis on strength softening of argillite underground water by damage mechanics[J]. Chinese Journal of Rock Mechanics and Engineering,2004,23(S2):4739-4743.
[10] 杨春和,冒海军. 板岩遇水软化的微观结构及力学特性研究[J]. 岩土力学,2006,27(12):2090-2098. Yang Chunhe, Mao Haijun. Study on variation of microstructure and mechanical properties of water-weakening slates[J]. Rock and Soil Mechanics,2006,27(12):2090-2098.
[11] 崔强,冯夏庭,薛强,等. 化学腐蚀下砂岩孔隙结构变化的机制研究[J]. 岩石力学与工程学报,2008,27(6):1209-1216. Cui Qiang,Feng Xiating,Xue Qiang,et al. Mechanism study of porosity structure change of sandstone under chemical corrosion[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(6):1209-1216.
[12] 煤炭科学研究总院开采设计研究分院,煤炭科学研究总院检测研究分院. 煤和岩石物理力学性质测定方法GB/T 23561. 5- 2009[S]. [13] 长江水利委员会长江科学院. 水利水电工程岩石试验规程(SL264-2001)[S]. 北京:中国水利水电出版社,2001. [14] 丁梧秀,冯夏庭. 灰岩细观结构的化学损伤效应及化学损伤定量化研究方法探讨[J]. 岩石力学与工程学报,2005,24(8):1283-1288. Ding Wuxiu, Feng Xiating. Study on chemical damage effect and quantitative analysis method of meso-structure of limestone[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(8):1283-1288.
[15] 汪亦显,曹平. 水化学腐蚀下岩石损伤力学效应研究[J]. 南华大学学报,2009,23(1):27-30. Wang Yixian,Cao Ping. Study on mechanical damage effect for rock under hydrochemical erosion[J]. Journal of University of South China(Science and Technology),2009,23(1):27-30.
[16] 贾善坡,陈卫忠,于洪丹,等. 泥岩隧道施工过程中渗流场与应力场全耦合损伤模型研究[J]. 岩土力学,2009,30(1):19-26. Jia Shanpo,Chen Weizhong,Yu Hongdan,et al. Research on seepage-strss coupling damage model of boom clay during tunneling[J]. Rock and Soil Mechanics,2009,30(1):19-26.
[17] 丁梧秀,冯夏庭. 灰岩细观结构的化学损伤效应及化学损伤定量化研究方法探讨[J]. 岩石力学与工程学报,2005,24(8):1283-1284. Ding Wuxiu, Feng Xiating. Study on chemical damage effect and quantitative analysis method of meso-structure of limestone[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(8):1283-1284.
计量
- 文章访问数: 12
- HTML全文浏览量: 1
- PDF下载量: 11