基于CT扫描的露天煤矿排土场重构土壤孔隙三维重建及定量表征

秦倩, 王金满, 白中科, 郭凌俐, 王洪丹

秦倩, 王金满, 白中科, 等. 基于CT扫描的露天煤矿排土场重构土壤孔隙三维重建及定量表征[J]. 煤炭学报, 2016, 41(S1): 109-117. DOI: 10.13225/j.cnki.jccs.2015.1120
引用本文: 秦倩, 王金满, 白中科, 等. 基于CT扫描的露天煤矿排土场重构土壤孔隙三维重建及定量表征[J]. 煤炭学报, 2016, 41(S1): 109-117. DOI: 10.13225/j.cnki.jccs.2015.1120
QIN Qian, WANG Jin-man, BAI Zhong-ke, et al. Three-dimensional reconstruction and quantitative characterization of reconstruction soil pore at opencast coal mine dump based on CT scanning[J]. Journal of China Coal Society, 2016, 41(S1): 109-117. DOI: 10.13225/j.cnki.jccs.2015.1120
Citation: QIN Qian, WANG Jin-man, BAI Zhong-ke, et al. Three-dimensional reconstruction and quantitative characterization of reconstruction soil pore at opencast coal mine dump based on CT scanning[J]. Journal of China Coal Society, 2016, 41(S1): 109-117. DOI: 10.13225/j.cnki.jccs.2015.1120

基于CT扫描的露天煤矿排土场重构土壤孔隙三维重建及定量表征

基金项目: 

国家自然科学基金资助项目(41271528)

山西省自然科学基金资助项目(2014011034-1)

详细信息
    作者简介:

    秦倩(1991—),女,安徽安庆人,硕士。E-mail:qinqian2013@163.com。

    通讯作者:

    王金满(1979—),男,内蒙古赤峰人,副教授。E-mail:wangjinman2002@163.com

  • 中图分类号: TD854.7

Three-dimensional reconstruction and quantitative characterization of reconstruction soil pore at opencast coal mine dump based on CT scanning

  • 摘要: 土壤孔隙对水分、养分的运移起着重要作用,重构土壤孔隙状况反映着复垦土壤质量的高低。通过对安太堡露天煤矿不同复垦年限排土场重构土壤(23,20,0 a)以及原地貌土壤进行CT扫描,获取土壤孔隙信息,基于Matlab平台进行土壤孔隙分布的三维重建,并搜索土壤孔隙团的个数及每个孔隙团的体积大小,计算土壤孔隙度,实现了重构土壤孔隙状况的定量表征。结果表明:随着复垦年限的增加,重构土壤孔隙度、连通性得到显著性提高,其中复垦23 a土壤孔隙状况最好,50~75 cm土层孔隙度最大,为23. 92%,其次为复垦20 a土壤,25~50 cm土层孔隙度最大,为14. 58%,未复垦土壤因受大型机械的压实作用,孔隙连通性最差,3个土层孔隙分布比较均一,孔隙度都接近于3%;孔隙团个数、最大孔隙团体积与孔隙度都符合较好的线性关系,随着孔隙度的增加,孔隙团的个数呈减小的趋势,最大孔隙团体积呈递增趋势;每个重建区域除最大孔隙团外,其余团的体积非常小。为了改善未复垦排土场土壤孔隙状况,应尽快进行植被恢复。
    Abstract: Soil pore plays an important role in migrating water and nutrient,the pore of reconstructed soil reflects the quality of reclaimed soil. In this paper,the reconstruction soil of different reclamation years at Antaibao opencast coal mine including 23 years,20 years and 0 years old and the soil of original landform were chosen to be scanned to obtain the information of soil pore. Soil pore distribution in three-dimension was reconstructed at matlab platform,then quantitative characterization was realized by searching the number of soil pore groups and the volume of each group. The soil porosity was also calculated. The results indicate that the porosity and connectivity of reconstructed soil had been significantly improved as reclamation years increasing. The condition of reclaimed soil pore of 23 years old is the best,the porosity of 50-75 cm layer is the largest,and its value is 23. 93% . The second one is the 20 years old soil,the porosity of 25-50 cm layer is the largest,and its value is 14. 58% . The connectivity of unreclaimed soil pore was the worst as compacted by the large mechanism. The porosity of three soil layers are all close to 3%,the distribution of the pore is relatively uniform. The number of pore groups and the volume of the largest pore group all have a good linear relationship with the porosity. With the increasing porosity,the number of the pore groups is decreasing,the volume of the largest pore group is increasing. The volume of pore groups is very small except the largest one. In order to improve the condition of pore of unreclaimed soil,the vegetation restoration should be carried out as soon as possible.
  • [1] 陈星彤,胡振琪,张学礼. 开采沉陷区不同复垦技术下复垦土壤压实的空间变化[J]. 灌溉排水学报,2005,24(6):74-77.

    Chen Xingtong,Hu Zhenqi,Zhang Xueli. Reclamation soil compaction spatial variation law about different reclamation technologies in subsidence area[J]. Journal of Irrigation and Drainage,2005,4(6):74-77.

    [2]

    Poesen J, Ingelmosanchez F. Runoff and sediment yield from topsoils with different porosity as affected by rock fragment cover and position[J]. Catena,1992(19):451-474.

    [3]

    Edwards W M,Norton L D,Redmond C E. Characterizing macroporesthat affect infiltration into nontilled soil[J]. Soil Science Society of America Journal,1988,52(2):483-487.

    [4] 李德成,Velde B,张桃林. 利用土壤切片的数字图像定量评价土壤孔隙变异度和复杂度[J]. 土壤学报,2003,40(5):678-682.

    Li Decheng,Velde B,Zhang Yaolin. Quantitative estimation of pore variability and complexity in soils by digital image method[J]. Acta Pedologica Sinica,2003,40(5):678-682.

    [5] 冯杰,郝振纯. CT扫描确定土壤大孔隙分布[J]. 水科学进展, 2002,13(5):611-617.

    Feng Jie,Hao Zhenchun. Distribution of soil macropores characterized by CT[J]. Advances in Water Science,2002,13(5):611-617.

    [6]

    Zeng Y,Gantzer C J,Peyton R L. Fractal dimension and lacunarity determined with X-ray computed tomography[J]. Soil Science Society of America Journal,1996(60):1718-1724.

    [7] 周虎,李保国,吕贻忠,等. 不同耕作措施下土壤孔隙的多重分形特征[J]. 土壤学报,2010,47(6):1094-1100.

    Zhou Hu,Li Baoguo,Lü Yizhong,et al. Multifractal characteristics of soil pore under different Tillage systems[J]. Acta Pedologica Sinica, 2010,47(6):1094-1100.

    [8]

    Martinez F S,Martin M A,Caniego F J,et al. Multifractal analysis of discretized X-ray CT images for the characterization of soil macropore structures[J]. Geoderma,2010,156(1-2):32-42.

    [9] 程亚南,刘建立,吕菲,等. 基于CT图像的土壤孔隙结构三维重建及水力学性质预测[J]. 农业工程学报,2012,28(22):115-122.

    Cheng Yanan, Liu Jianli, Lü Fei, et al. Three-dimensional reconstruction of soil pore structure and prediction of soil hydraulic properties based on CT images[J]. Transactions of the Chinese Society of Agricultural Engineering,2012,28(22):115-122.

    [10]

    Ngom N F,Garnier P,Monga O,et al. Extraction of three-dimensional soil pore space from microtomography images using a geometrical approach[J]. Geoderma,2011,163(1-2):127-134.

    [11]

    Ojeda-Magana B,Quintanilla-Dominguez J,Ruelas R,et al. Identification of pore spaces in 3D CT soil images using PFCM partitional clustering[J]. Geoderma,2014,217:90-101.

    [12] 孙华飞,鞠杨,行明旭,等. 基于CT图像的土石混合体破裂-损伤的三维识别与分析[J]. 煤炭学报,2014,39(3):452-459.

    Sun Huafei, Ju Yang, Xing Mingxu, et al. 3 D identification and analysis of fracture and damage in soil-rock mixtures based on CT image processing[J]. Journal of China Coal Society,2014,39(3):452-459.

    [13] 李伟,要惠芳,刘鸿福,等. 基于显微CT的不同煤体结构煤三维孔隙精细表征[J]. 煤炭学报,2014,39(6):1127-1132.

    Li Wei,Yao Huifang,Liu Hongfu,et al. Advanced characterization of three-dimensional pores in coals with different coal-body structure by micro-CT[J]. Journal of China Coal Society,2014,39(6):1127-1132.

    [14]

    Yang B H,Wu A X,Miao X X,et al. 3D characterization and analysis of pore structure of packed ore particle beds based on computed tomography images[J]. Transactions of Nonferrous Metals Society of China,2014,24(3):833-838.

    [15] 杨晓娟,李春俭. 机械压实对土壤质量、作物生长、土壤生物及环境的影响[J]. 中国农业科学,2008,41(7):2008-2015.

    Yang Xiaojuan,Li Chunjian. Impacts of mechanical compaction on soil properties,growth of crops,soil-borne organisms and environment[J]. Scientia Agricultura Sinica,2008,41(7):2008-2015.

    [16] 李红,范素芳,张光灿,等. 黄土丘陵区退耕还林后不同林地土壤孔隙与贮水特性[J]. 水土保持通报,2010,30(1):27-30.

    Li Hong,Fan Sufang,Zhang Guangcan,et al. Characteristics of soil water-holding and soil porosity of different tree species after conversion of cropland to forest in loss hilly region[J]. Bulletin of Soil and Water Conservation,2010,30(1):27-30.

    [17]

    Lipiec J,Hajnos M,Swieboda R. Estimating effects of compaction on pore size distribution of soil aggregates by mercury porosimeter[J]. Geoderma,2012,179:20-27.

    [18] 张兴义,隋跃宇. 农田土壤机械压实研究进展[J]. 农业机械学报,2005,36(6):122-125.

    Zhang Xingyi,Sui Yueyu. International research trends of soil compaction induced by moving machine fiend operations[J]. Transactions of the Chinese Society for Agricultural Machinery, 2005, 36(6):122-125.

    [19]

    Jordan D,Ponder F,Hubbard V C. Effects of soil compaction,forest leaf litter and nitrogen ferilizer on two oak species and microbial activity[J]. Applied Soil Ecology,2003,23:33-41.

    [20]

    Bouwman L A,Arts W B M. Effects of soil compaction on the relationships between nematodes, grass production and soil physical properties[J]. Applied Soil Ecology,2000,14:213-222.

    [21]

    Groleau-Renaud V, Plantureux S, Guckert A. Influence of plant morphology on root exudation of maize subjected to mechanical impendence in hydroponics conditions[J]. Plant and Soil,1998, 201:231-239.

    [22] 刘宁,李新举,郭斌,等. 机械压实过程中复垦土壤紧实度影响因素的模拟分析[J]. 农业工程学报,2014,30(1):183-190.

    Liu Ning,Li Xinju,Guo Bin,et al. Simulation analysis on influencing factors of reclamation soil compaction in mechanical compaction process[J]. Transactions of the Chinese Society of Agricultural Engineering,2014,30(1):183-190.

    [23] 王金满,杨睿璇,白中科. 草原区露天煤矿排土场复垦土壤质量演替规律与模型[J]. 农业工程学报,2012,28(14):229-235.

    Wang Jinman, Yang Ruixuan, Bai Zhongke. Succession law and model of reclamation soil quality on grassland opencast coal mine dump[J]. Transactions of the Chinese Society of Agricultural Engineering,2012,28(14):229-235.

    [24] 王金满,郭凌俐,白中科,等. 黄土区露天煤矿排土场复垦后土壤与植被的演变规律[J]. 农业工程学报,2013,29(20):223-232.

    Wang Jinman,Guo Lingli,Bai Zhongke,et al. Succession law of reclaimed soil and vegetation on opencast coal mine dump of loess area[J]. Transactions of the Chinese Society of Agricultural Engineering,2013,29(20):223-232.

    [25] 李宗超,胡霞. 小叶锦鸡儿灌丛化对退化沙质草地土壤孔隙特征的影响[J]. 土壤学报,2015,52(1):225-231.

    Li Zongchao,Hu Xia. Effects of shrub(Caraganamicrophylla Lam) encroachment on soil porosity of degraded sandy grassland[J]. Acta Pedologica Sinica,2015,2(1):225-231.

    [26] 钟继红,唐淑英,谭军. 广东红壤类土壤结构特征及其影响因素[J]. 土壤与环境,2002,11(1):61-65.

    Zhong Jihong, Tang Shuying, Tan Jun. Structure characteristics of red soils and their effective factors[J]. Soil and Environmental Sciences,2002,11(1):61-65.

    [27]

    Regelink I C,Stoof C R,Rousseva S,et al. Linkages between aggregate formation,porosity and soil chemical properties[J]. Geoderma,2015,247:24-37.

    [28]

    Chen Y Y, Yang K, Tang W J, et al. Parameterizing soil organic carbon's impacts on soil porosity and thermal parameters for Eastern Tibet grasslands[J]. Science China-Earth Sciences,2012, 55(6):1001-1011.

    [29] 樊文华,白中科,李慧峰,等. 不同复垦模式及复垦年限对土壤微生物的影响[J]. 农业工程学报,2011,27(2):330-336.

    Fan Wenhua, Bai Zhongke, Li Huifeng, et al. Effects of different vegetation restoration patterns and reclamation years on microbes in reclaimed soil[J]. Transactions of the Chinese Society of Agricultural Engineering,2011,27(2):330-336.

    [30]

    Li J J,Zheng Y M,Yan J X,et al. Effects of different regeneration scenarios and fertilizer treatments on soil microbial ecology in reclaimed opencast mining areas on the Loess Plateau China[J]. PLoS One,2013,8(5):1-11.

计量
  • 文章访问数:  22
  • HTML全文浏览量:  2
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-28
  • 修回日期:  2015-12-12
  • 网络出版日期:  2023-05-25

目录

    /

    返回文章
    返回
    x 关闭 永久关闭