错层位外错式沿空掘巷机理及相邻巷道的立体化联合支护技术

王志强, 苏越, 石磊, 徐春虎, 孙中文, 宋梓瑜

王志强, 苏越, 石磊, 等. 错层位外错式沿空掘巷机理及相邻巷道的立体化联合支护技术[J]. 煤炭学报, 2018, 43(S1): 12-20. DOI: 10.13225/j.cnki.jccs.2017.1407
引用本文: 王志强, 苏越, 石磊, 等. 错层位外错式沿空掘巷机理及相邻巷道的立体化联合支护技术[J]. 煤炭学报, 2018, 43(S1): 12-20. DOI: 10.13225/j.cnki.jccs.2017.1407
WANG Zhi-qiang, SU Yue, SHI Lei, et al. Mechanism of external-misaligned stagger arrangement of roadway driven along next goaf and the 3D combined support technique of adjacent roadway[J]. Journal of China Coal Society, 2018, 43(S1): 12-20. DOI: 10.13225/j.cnki.jccs.2017.1407
Citation: WANG Zhi-qiang, SU Yue, SHI Lei, et al. Mechanism of external-misaligned stagger arrangement of roadway driven along next goaf and the 3D combined support technique of adjacent roadway[J]. Journal of China Coal Society, 2018, 43(S1): 12-20. DOI: 10.13225/j.cnki.jccs.2017.1407

错层位外错式沿空掘巷机理及相邻巷道的立体化联合支护技术

基金项目: 

国家自然科学基金面上资助项目(51774289)

国家自然科学基金青年基金资助项目(51404270)

中央高校基本科研业务费专项资金资助项目(2011QZ06)

详细信息
    作者简介:

    王志强(1980-),男,内蒙古呼伦贝尔人,副教授,博士生导师,博士。E-mail:wzhiqianglhm@126.com

  • 中图分类号: TD353

Mechanism of external-misaligned stagger arrangement of roadway driven along next goaf and the 3D combined support technique of adjacent roadway

  • 摘要: 针对特厚煤层中应用错层位外错式沿空掘巷与相邻巷道的立体化联合支护机理展开研究。首先理论分析了错层位外错式沿空掘巷布置特点,发现:①沿煤层顶板及起坡下方的三角煤体保持稳定且对实体煤提供侧向支承应力σx作用,因此一侧采空情况下实体煤从上至下出现了新的变化,即侧向支承应力从0增加至σx;②依据巷道布置层位与侧向支承应力的不同,将特厚煤层从上至下进行了分区,分别为一侧采空实体煤分区、过渡区与弹性区;③布置接续工作面沿空掘巷时,其围岩处于弹性状态,巷道顶部属于一侧采空实体煤内的破碎区、塑性区,因此承载小,也即实现了围岩稳定与载荷低二者之间的统一。利用相邻两条巷道高、低不同这一立体化空间关系,提出相邻巷道的立体化联合支护技术,分析其特点包括:①沿煤层顶板布置巷道,主动支护可打入深部稳定岩层内;②通过加强一侧采空实体煤内的加固作用,为相邻沿煤层底板巷道提供锚固点;③底板沿空掘巷顶部支护体可深入顶板岩层、联合锚固区与过渡区,可实现全长锚固以更加充分发挥支护作用。为了验证前述理论成果,采用数值模拟进行计算分析,发现:①采用错层位外错式沿空掘巷技术,显著改善了沿空巷道围岩性质与应力分布现状,实现了低应力与围岩稳定二者的统一,且验证了前述对错层位外错式沿空掘巷特厚煤层纵向分区的成果;②零原岩应力场条件下联合支护效果较为明显,沿顶巷道顶板锚索深入基本顶段、巷帮一侧锚固段、沿底巷道顶板锚索深入岩层内与联合锚固区均出现应力集中作用,显著改善了沿底巷道单巷支护受顶煤厚度限制无法形成有效锚固点的现状;③在对实际工程背景的数值计算发现,与沿底巷道围岩大范围破坏且无法控制相比,采用错层位外错式沿空掘巷相邻巷道联合支护技术可显著控制沿空巷道围岩破坏范围。
    Abstract: Based on the 3D (three-dimensional) combined support mechanism of external-misaligned stagger arrangement of roadway driven along next goaf and adjacent roadway in the ultra-thick coal seam, the roadway layout characteristics are theoretically analyzed and found that: ① The roof of coal seam and triangular coal body could keep stable, providing the lateral abutment stress σxto solid coal.Therefore, the next goaf side of solid coal has been changed from top to bottom, that is, the lateral abutment stress increases from 0 to σx. ② According to the difference in roadway layout and lateral abutment stress, the ultra-thick coal seam from top to bottom is divided into the next goaf side of solid coal zone, the transition zone, and the elastic zone. ③ When arranging a continuous working face roadway driven along next goaf, its surrounding rock is in an elastic state, the roof of roadway carries small load, which locates on the crushing zone and the plastic zone in the next goaf side of the solid coal.The roadway achieves the unity of the stability of the surrounding rock and the low-load.Then the authors propose a 3D combined support technique of adjacent roadway by using high and low roadways of different 3D spatial relationship.Its characteristics of the proposed technique are as follows: ① The active support body has been carried into the deep stable rock stratum in the roadway driven along the roof of the coal seam. ② By strengthening the reinforcement of the next goaf side of solid coal zone, it provides an anchor point for the adjacent roadway along the bottom in the coal seam. ③ The support body in the top of the roadway driven along next goaf has been carried into the deep roof of rock stratum by combining anchorage zone and transition zone, which can achieve a full-length anchorage to fully support function.In order to test the theoretical results, the numerical simulation analysis shows: ① Through the use of external-misaligned stagger arrangement roadway driven along next goaf technique, it achieves the unity of stability of surrounding rock and low-stress, and tests the results of external-misaligned stagger arrangement roadway driven along next goaf's vertical division. ② Under the condition of obviously combined support effect of zero-rock stress field, the top of roadway driven along roof's anchor cables has been carried into the deep basic roof and its roadway's side of anchorage zone. The top of the roadway driven along next goaf's anchor cables has been carried into the deep roof of rock stratum and combined anchorage zone, and stress concentration occurs in these zones.This technique forms an effective anchor point, which is not limited by the thickness of top coal. ③ Through numerical calculation on a field engineering project, it is found that the proposed technique is capable of effectively controlling the large-scale destruction of the surrounding rock roadway than previously used ones.The results can provide a reference for ultra-thick coal seam mining.
  • [1]

    WHITTAKER B N.Design and stability of pillar in long wall mining[J].Mining Engineer, 1979, 13:68-72.

    [2] 王永秀, 齐庆新, 陈兵.煤柱应力分布规律的数值模拟分析[J].煤炭科学技术, 2004, 32(10):59-62.

    WANG Yongxiu, QI Qingxin, CHEN Bing.Analysis on digital simulation for stress distribution law of coal pillar[J].Coal Science and Technology, 2004, 32(10):59-62.

    [3] 谢广祥, 杨科, 常聚才.煤柱宽度对综放面围岩应力分布规律影响[J].北京科技大学学报, 2006, 28(11):1111-1113.

    XIE Guangxiang, YANG Ke, CHANG Jucai.Effect of coal pillar width on the stress distribution law of surrounding rocks in fully mechanized top-coal caving mining face[J].Journal of University of Science and Technology Beijing, 2006, 28(11):1111-1113.

    [4]

    KUSHWAHA A, SINGH S K, TEWARI S, et al.Empirical approach for designing of support system in mechanized coal pillar mining[J].International Journal of Rock Mechanics&Mining Sciences, 2010, 47(7):1063-1078.

    [5]

    GHASEMI E, SHAHRIAR K.A new coal pillars design method in order to enhance safety of the retreat mining in room and pillar mines[J].Safety Science, 2012, 50(3):579-585.

    [6] 侯朝炯, 李学华.综放沿空掘巷围岩大、小结构的稳定性原理[J].煤炭学报, 2001, 26(1):1-7.

    HOU Chaojiong, LI Xuehua.Stability principle of big and small structures of rock surrounding roadway driven along goaf in fully mechanized top coal caving face[J].Journal of China Coal Society, 2001, 26(1):1-7.

    [7] 李学华.综放沿空掘巷围岩大小结构稳定性的研究[D].徐州:中国矿业大学, 2000.

    LI Xuehua.Stability principle of big and small structures of rock surrounding roadway driven along goaf in fully mechanized top coal caving face[D].Xuzhou:China University of Mining and Technology, 2000.

    [8] 翟所业, 吴士良.沿空送巷的理论探讨[J].矿山压力与顶板管理, 2003(2):45-46, 49.

    ZHAI Suoye, WU Shiliang.Theoretical discussion on gob side entry[J].Ground Pressure and Strata Control, 2003(2):45-46, 49.

    [9] 王红胜, 张东升, 李树刚, 等.基于基本顶关键岩块B断裂线位置的窄煤柱合理宽度的确定[J].采矿与安全工程学报, 2014, 31(1):10-16.

    WANG Hongsheng, ZHANG Dongsheng, LI Shugang, et al.Rational width of narrow coal pillar based on the fracture line location of key rock B in main roof[J].Journal of Mining&Safety Engineering, 2014, 31(1):10-16.

    [10] 王卫军, 侯朝炯等.综放沿空巷道底板受力变形分析及底鼓力学原理[J].岩土力学, 2011, 22(3):319-322.

    WANG Weijun, HOU Chaojiong, et al.Mechanical deformation analysis and principle of floor heave of roadway driving gob in fully mechanized sub-level caving face[J].Rock-soil Mechanics, 2011, 22(3):319-322.

    [11] 石永奎, 宋振骐, 王崇革.软煤层综放工作面沿空掘巷支护设计[J].岩土力学, 2001, 22(4):509-512.

    SHI Yongkui, SONG Zhengqi, WANG Chongge.The supporting design of road driving along next goaf in soft seam with fully mechanized top-caving[J].Rock and Soil Mechanics, 2011, 22(4):509-512.

    [12] 韩承强, 张开智, 徐小兵, 等.区段小煤柱破坏规律及合理尺寸研究[J].采矿与安全工程学报, 2007, 24(3):370-373.

    HAN Cengqiang, ZHANG Kaizhi, XU Xiaobing, et al.Study on failure regularity and reasonable dimension of district sublevel small coal pillar[J].Journal of Mining&Safety Engineering, 2007, 24(3):370-373.

    [13] 赵国贞, 马占国, 孙凯, 等.小煤柱沿空掘巷围岩变形控制机理研究[J].采矿与安全工程学报, 2010, 27(4):517-521.

    ZHAO Guozhen, MA Zhanguo, SUN Kai, et al.Research on deformation controlling mechanism of the narrow pillar of roadway driving along next goaf[J].Journal of Mining&Safety Engineering, 2010, 27(4):517-521.

    [14] 郑西贵, 姚志刚, 张农.掘采全过程沿空掘巷小煤柱应力分布研究[J].采矿与安全工程学报, 2012, 29(4):459-465.

    ZHENG Xigui, YAO Zhigang, ZHANG Nong.Stress distribution of coal pillar with gob-side entry driving in the process of excavation&mining[J].Journal of Mining&Safety Engineering, 2012, 29(4):459-465.

    [15] 谢广祥, 杨科, 常聚才.综放回采巷道围岩力学特征实测研究[J].中国矿业大学学报, 2006, 35(1):94-98.

    XIE Guangxiang, YANG Ke, CHANG Jucai.Spot testing on mechanical characteristics of surrounding rock in gates of fully mechanized top-coal caving face[J].Journal of China University of Mining&Technoiogy, 2006, 35(1):94-98.

    [16] 辛亚军, 勾攀峰, 牟东风, 等.非软顶底板煤巷锚杆支护及围岩松动规律[J].采矿与安全工程学报, 2012, 29(2):203-208.XIN Yajun, Gou Panfeng, YUN Dongfeng, et al.Loose regularity of bolting and surrounding in a non-soft floor and roof gateway[J].Journal of Mining&Safety Engineering, 2012, 29(2):203-208:
    [17] 谢广祥, 常聚才.深井巷道控制围岩最小变形时空耦合一体化支护[J].中国矿业大学学报, 2013, 42(2):183-187.

    XIE Guangxiang, CHANG Jucai.Study of space-time coupled and integrative supporting method of controlling the Minimum deformation of surrounding rock in deep mine roadway[J].Journal of China University of Mining&Technoiogy, 2013, 42(2):183-187.

    [18] 黄庆享, 刘玉卫.巷道围岩支护的极限自稳平衡拱理论[J].采矿与安全工程学报, 2014, 31(3):354-358.

    HUANG Qingxiang, LIU Yuwei.Ultimate self-stable arch theory in roadway support[J].Journal of Mining&Safety Engineering, 2014, 31(3):354-358.

    [19] 王连国, 张志康, 张金耀, 等.高应力复杂煤层沿空巷道锚注支护数值模拟研究[J].采矿与安全工程学报, 2009, 26(2):145-149.

    WANG Liangguo, ZHANG Zhikang, ZHANG Jinyao, et al.Numerical simulation of bolt-grouting for gob-side entry in complex seam under a high stress[J].Journal of Mining&Safety Engineering, 2009, 26(2):145-149.

    [20] 齐干, 李占金, 唐强达, 等.深部大断面软岩巷道变形力学机制及耦合支护设计[J].采矿与安全工程学报, 2009, 26(4):455-459.

    QI Gan, LI Zhanjin, TANG Qiangda, et al.Deformation mechanical mechanism and coupling support design for deep large-sectionsoft-rock roadway[J].Journal of Mining&Safety Engineering, 2009, 26(4):455-459.

    [21] 孙玉福.高强度锚索支护技术及在潞安矿区的应用[J].采矿与安全工程学报, 2010, 27(4):595-599.

    SUN Yufu.Application of high strength cable bolting technology in Lu'an Coal mining area[J].Journal of Mining&Safety Engineering, 2010, 27(4):595-599.

    [22] 勾攀峰, 韦四江, 张盛.不同水平应力对巷道稳定性的模拟研究[J].采矿与安全工程学报, 2010, 27(2):143-148.

    GOU Pangfeng, WEI sijiang, ZHANG sheng.Numerical simulation of effect of horizontal stresses at different levels on stability of roadways[J].Journal of Mining&Safety Engineering, 2010, 27(2):143-148.

    [23] 严红, 何富连, 徐腾飞, 等.高应力大断面煤巷锚杆索桁架系统试验研究[].岩土力学, 2012, 33(S2):257-262.

    YAN Hong, HE Fuliang XU Tengfei, et al.Experimental study of bolt and cable truss system for large cross-section coal roadways under high stress.Rock and Soil Mechanics, 2012, 33(S2):257-262.

    [24] 李书民, 孙小岩, 白杨杨.深部回采巷道锚网索联合支护技术实践[J].煤炭科学技术, 2012, 40(1):38-41.

    LI Shuming, SUN Xiaoyan, BAI Yangyang.Practices on bolt/steel mesh/anchor combined support technology of mining gateway in deep mine[J].Journal of Mining&Safety Engineering, 2012, 40(1):38-41.

    [25] 张志康, 王连国, 善仁亮, 等.深部动压巷道高阻让压支护技术研究[J].采矿与安全工程学报, 2012, 29(1):33-37.

    ZHANG Zhikang, WANG Lianguo, SAN Renliang, et al.Support technology of high resistant and yielding property for deep roadway under dynamic pressure[J].Journal of Mining&Safety Engineering, 2012, 29(1):33-37.

    [26] 郭志飚, 王炯, 张跃林, 等.清水矿深部软岩巷道破坏机理及恒阻大变形控制对策[J].采矿与安全工程学报, 2014, 31(6):945-949.

    GUO Zhibiao, WANG Jiong, ZHANG Yuelin, et al.Failure mechanism and constant resistance large deformation control measures of deep soft rock in Qingshui Coal Mine[J].Journal of Mining&Safety Engineering, 2014, 31(6):945-949.

    [27] 苏学贵, 宋选民, 李浩春, 等.特厚松软复合顶板巷道拱-梁耦合支护结构的构建及应用研究[J].岩石力学与工程学报, 2014, 33(9):1828-1836.

    SU Xuegui, SONG Xuanmin, LI Haochun, et al.Study on coupled arch-beam support structure of roadway with extra-thick soft compound roof[J].Chinese Journal of Rock Mechanics and Engineering, 2014, 33(9):1828-1836.

    [28] 林健, 任硕.树脂全长锚固锚杆外形尺寸优化数值模拟研究[J].采矿与安全工程学报, 2015, 32(2):273-278.

    LIN Jian, REN Shuo.Numerical simulation optimization research of bolt profile configuration with resin full-length anchoring[J].Journal of Mining&Safety Engineering, 2015, 32(2) 273-278.

    [29] 康红普, 范明建, 高富强, 等.超千米深井巷道围岩变形特征与支护技术[J].岩石力学与工程学报, 2015, 34(11):2227-2241.

    KANG Hongpu, FAN Mingjian, GAO Fuqiang, et al.Deformation and support of rock roadway at depth more than 1000 meters[J].Chinese Journal of Rock Mechanics and Engineering, 2015, 34(11):2227-2241.

    [30] 赵景礼, 吴健.厚煤层错层位巷道布置采全厚采煤法[P].中国专利:ZL98100544.6.2002-01-23.
    [31] 王志强.实现厚煤层沿空掘巷相邻巷道联合支护的方法[P].中国专利:2016105473477.2018-04-06.
    [32] 刘金海, 姜福兴, 王乃国, 等.深井特厚煤层综放工作面区段煤柱合理宽度研究[J].岩石力学与工程学报, 2012, 31(5):921-927.

    LIU Jinhai, JIANG Fuxing, WANG Naiguo, et al.Research on reasonable width of segment pillar of fully mechanized caving face in extra-thick coal seam of deep shaft[J].Chinese Journal of Rock Mechanics and Engineering, 2012, 31(5):921-927.

    [33] 王金华, 康红普, 高富强.锚索支护传力机制与应力分布的数值模拟[J].煤炭学报, 2008, 33(1):1-6.

    WANG Jinhua, KANG Hongpu, GAO Fuqiang.Numerical simulation on load-transfer-mechanisms and stress distribution characteristics of cable bolts[J].Journal of China Coal Society, 2008, 33(1):1-6.

计量
  • 文章访问数:  28
  • HTML全文浏览量:  0
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-16
  • 修回日期:  2017-11-28
  • 网络出版日期:  2023-05-25

目录

    /

    返回文章
    返回
    x 关闭 永久关闭