基于人工智能的TBM选型适应性评价决策支持系统

詹金武, 李涛, 李超

詹金武, 李涛, 李超. 基于人工智能的TBM选型适应性评价决策支持系统[J]. 煤炭学报, 2019, (10). DOI: 10.13225/j.cnki.jccs.2018.1316
引用本文: 詹金武, 李涛, 李超. 基于人工智能的TBM选型适应性评价决策支持系统[J]. 煤炭学报, 2019, (10). DOI: 10.13225/j.cnki.jccs.2018.1316
ZHAN Jinwu, LI Tao, LI Chao. Decision support system of adaptability evaluation for TBM selection based on artificial intelligence[J]. Journal of China Coal Society, 2019, (10). DOI: 10.13225/j.cnki.jccs.2018.1316
Citation: ZHAN Jinwu, LI Tao, LI Chao. Decision support system of adaptability evaluation for TBM selection based on artificial intelligence[J]. Journal of China Coal Society, 2019, (10). DOI: 10.13225/j.cnki.jccs.2018.1316

基于人工智能的TBM选型适应性评价决策支持系统

Decision support system of adaptability evaluation for TBM selection based on artificial intelligence

  • 摘要: 随着我国西部的大开发和“一带一路”的建设,迫切需要大力发展交通、矿山、水利等重大“生命线”工程,而深埋长大隧道往往是这些生命线工程的关键控制性工程。限于地质、地形和自然环境条件,从施工工期、造价和技术进步3个方面考虑,TBM(Tunnel Boring Machine)工法是深长隧道开挖的优先选择。深长隧道TBM的适应性受到众多因素的影响,难以进行有效和定量的评价。主要影响因素为不良地质,如突涌水、软岩大变形、断层破碎带、岩爆等;此外,隧道的设计、隧址地质条件等对TBM的选型也有重要影响。人工智能方法具有能够分析复杂因素影响和处理复杂问题的突出特点,可用于TBM选型适应性的有效评价。首先,基于层次分析法和模糊综合评判方法,通过TBM选型评价知识的获取,选取能够充分反映不同机型地质适应性差异、具有代表性和区分度高的7个评价指标,构建了TBM选型适应性评价指标体系及模糊综合评价模型,确定了各个评价指标的模糊隶属函数。其次,通过编写权重辅助计算程序,确定了3种TBM机型选型适应性评价指标的权重;其中,为了避免单指标决策的局限性和主观臆断的缺陷,采用智能设计理论和决策理论相结合的方法,完成了多指标智能决策的定量化选型。将评价模型与知识获取相结合,以规则的形式表示知识,构建了TBM选型适应性评价知识库。最后,基于智能评价决策支持系统平台IDSDP,开发了TBM选型适应性智能评价决策支持系统,为深长隧道TBM选型提供了一种新的量化评价方法。利用该系统对高黎贡山铁路隧道TBM的选型进行了适应性评价,评价结果与实际情况相吻合。
    Abstract: With the construction of the Western region of China and the development of “ the Belt and Road Initia- tives”,there is an urgent need to develop some major “lifeline” projects such as transportation,mining and water con- servancy. Deep buried tunnels are often the key control projects for these lifeline projects. Limited to geological,topo- graphical and natural environmental conditions,the TBM method is the preferred choice for deep tunnel excavation in terms of construction period,cost and technical progress. The adaptability of deep tunnel TBM is affected by many fac- tors,making it difficult to conduct an effective and quantitative evaluation. The main influencing factors are unfavorable geology,such as inrush water,large soft rock deformation,fault fracture zone,rock burst,etc. In addition,the design of the tunnel and the geological conditions of the tunnel site also have an important impact on the selection of TBM. The artificial intelligence method has the outstanding features of being able to analyze the influence of complex factors and dealing with complex problems,and can be used for the effective evaluation of the adaptability of TBM selection. First- ly,based on the analytic hierarchy process ( AHP) and fuzzy comprehensive evaluation method,through the acquisi- tion of TBM selection knowledge,seven indicators which can fully reflect the differences of adaptability,representative- ness and high discrimination are selected. The evaluation index system and fuzzy comprehensive evaluation model of TBM selection adaptability are constructed,and the fuzzy membership function of each evaluation index is determined. Secondly,the weights of three TBM model selection adaptability evaluation indicators are determined by compiling the weights assistant calculation program. Among them,in order to avoid the limitation of single index decision and the de- fect of subjective assumption,a combination of intelligent design theory and decision-making theory is adopted to carry out the quantitative selection of multi-indicator intelligent decision-making. Combining the evaluation model with knowledge,expressing the knowledge in the form of rules,the TBM selection adaptive evaluation knowledge base is constructed. Finally,based on the IDSDP intelligent evaluation and decision system platform,an intelligent evaluation and decision-making system for TBM selection is developed,which provides a new quantitative evaluation method for the deep tunnel TBM selection. The adaptability of TBM selection for Gaoligongshan Railway Tunnel is evaluated by u- sing the decision-making system,and the evaluation results are in good agreement with the actual situation.
  • 期刊类型引用(15)

    1. 刘泉维,邵小康,纪明涛,刘林胜,叶守杰,江玉生,杨志勇,张西昌. 复合地层加强型盾构对比选型技术与滚刀磨损特征研究. 铁道标准设计. 2024(07): 154-161+170 . 百度学术
    2. 刘泉声,潘玉丛,余宏淦,邓鹏海,陈梓韬,杜承磊. 深部金属矿山巷道TBM掘进技术应用现状及研究进展. 有色金属(矿山部分). 2024(06): 25-41 . 百度学术
    3. 万鹏飞,顾伟红,翟强. 基于UMT-SPA法的TBM选型和适应性评价. 武汉大学学报(工学版). 2023(03): 329-336 . 百度学术
    4. 岑道勇,王海军,熊阳阳. 复杂地质条件下超大直径隧道TBM选型及应用. 施工技术(中英文). 2023(05): 97-102 . 百度学术
    5. 许泽帆,李利利,李东亮,何流,毛学丰. 基于动态不确定随机模拟的隧道突水风险评价. 科技创新与应用. 2023(15): 47-51+55 . 百度学术
    6. 高峰,黄兴,刘泉声,殷欣,伯音,王心语. 基于人工神经网络多模型迁移学习的隧(巷)道机械化掘进装备控制参数自主决策方法. 岩石力学与工程学报. 2023(06): 1405-1420 . 百度学术
    7. 陈凡,何川,黄钟晖,孟庆军,刘川昆,王士民. 地铁区间隧道多模式掘进设备选型适应性研究. 现代隧道技术. 2022(03): 53-62 . 百度学术
    8. 张凯,王雅静,赵茜阳,耿笑颖,向杉,李墨. 我国典型煤化工技术潜在出口能力评价. 煤炭科学技术. 2022(06): 313-320 . 百度学术
    9. 汤琳,关惠元. 基于参数化的榫卯尺寸智能确定方法. 北京林业大学学报. 2021(03): 145-154 . 百度学术
    10. 孙彩云,李晓钟,张晴斌. 基于模糊综合评判的深厚粉细砂层灌注桩钻机选型. 广东交通职业技术学院学报. 2021(01): 6-11 . 百度学术
    11. 王彦杰,李苍松,史永跃,张涛,王彬. 川藏铁路隧道主要不良地质TBM适应性分析及施工关键技术. 隧道建设(中英文). 2021(S1): 470-477 . 百度学术
    12. 詹金武,李涛,黄建华,孙明社,陈军浩. 基于案例推理的TBM选型适应性评价系统开发及应用. 铁道科学与工程学报. 2020(06): 1562-1570 . 百度学术
    13. 孙振川,杨延栋,李凤远,张兵. 基于隧道工程实例的TBM破岩特征参数研究. 隧道建设(中英文). 2020(S1): 25-30 . 百度学术
    14. 杨阳. 基于突变理论的深中通道水下隧道施工安全隐患评价研究. 隧道建设(中英文). 2020(S1): 75-81 . 百度学术
    15. 孙晶晶,张建军,龚柏岩,魏攀一,石莉. 水下公路隧道运营安全事故隐患排查治理体系研究. 公路交通科技. 2020(S2): 94-100 . 百度学术

    其他类型引用(7)

图(19)
计量
  • 文章访问数:  1279
  • HTML全文浏览量:  22
  • PDF下载量:  338
  • 被引次数: 22
出版历程
  • 网络出版日期:  2023-04-10
  • 发布日期:  2019-10-30

目录

    /

    返回文章
    返回
    x 关闭 永久关闭