基于神经网络PID综掘巷道超前支架支撑力自适应控制

薛光辉, 管健, 柴敬轩, 张昊, 瞿圆媛, 吴淼

薛光辉, 管健, 柴敬轩, 等. 基于神经网络PID综掘巷道超前支架支撑力自适应控制[J]. 煤炭学报, 2019, (11). DOI: 10.13225/j.cnki.jccs.2018.1688
引用本文: 薛光辉, 管健, 柴敬轩, 等. 基于神经网络PID综掘巷道超前支架支撑力自适应控制[J]. 煤炭学报, 2019, (11). DOI: 10.13225/j.cnki.jccs.2018.1688
XUE Guanghui, GUAN Jian, CHAI Jingxuan, et al. Adaptive control of advance bracket support force in fully mechanized roadway based on neural network PID[J]. Journal of China Coal Society, 2019, (11). DOI: 10.13225/j.cnki.jccs.2018.1688
Citation: XUE Guanghui, GUAN Jian, CHAI Jingxuan, et al. Adaptive control of advance bracket support force in fully mechanized roadway based on neural network PID[J]. Journal of China Coal Society, 2019, (11). DOI: 10.13225/j.cnki.jccs.2018.1688

基于神经网络PID综掘巷道超前支架支撑力自适应控制

Adaptive control of advance bracket support force in fully mechanized roadway based on neural network PID

  • 摘要: 掘进扰动下,煤炭深部开采高地应力会导致深部围岩大范围塑性破坏和强烈动力失稳,且持续时间较长,存在安全隐患,严重威胁着掘进工作面煤矿工人的人身安全。近年来,国内外学者在深部围岩压力变化规律、围岩控制理论和超前支护等方面开展了许多研究,但仍存在许多亟待解决的问题。超前支架的支撑力自适应围岩压力变化可充分利用巷道围岩的自承载能力,避免巷道围岩出现破裂、碎裂等现象。介绍了一种自移式超前支架的结构,分析了该支架支撑力液压控制系统,建立了该控制系统的数学模型,研究了该系统在无控制算法、传统PID控制和神经网络PID控制等情况下的系统性能;根据旗山矿的地质条件建立了围岩-超前支架力学耦合模型,利用FLAC3D软件仿真拟合得到了巷道围岩压力变化曲线;并以此曲线为输入,模拟研究了在传统PID控制和神经PID控制两种算法时超前支架支撑力对巷道围岩压力变化的自适应变化规律。研究结果表明,与传统PID控制相比,采用神经网络PID控制算法后,支架支撑力控制系统调节时间约为2 s,缩短了16倍,超调量约为6%,动态性能得到了改善;自适应围岩压力跟踪误差为0.005 5,改善了6.8倍,证明了神经网络PID控制策略能够对支架支撑力进行控制且其控制效果比传统PID控制效果有较大优势。
    Abstract: Under excavation disturbance,high crustal stress in deep coal mining will lead to large-scale plastic failure and strong dynamic instability of deep surrounding rock,which lasts for a long time and seriously threatens the personal safety of coal miners at the excavation working face. In recent years,a lot of research have been carried on the variation law of deep surrounding rock pressure,surrounding rock control theory and advance support,but there are still many problems to be solved. In order to avoid the phenomenon of breakage and fragmentation of roadway surrounding rock, the support force of advance bracket should adapt to the change of surrounding rock pressure,so as to make full use of the self-supporting capacity of roadway surrounding rock. The structure of one kind self-forward advance bracket is in- troduced and its hydraulic control system is analyzed,and the mathematical model of the control system is established. The perfor-mance of the control system is studied with no control algorithm,traditional PID control algorithm and neu- ral network PID control algorithm. According to the geological conditions in Qishan mine,the mechanical coupling model of surrounding rock-advance bracket is established,and the curve of roadway surrounding rock pressure is ob- tained by FLAC3D simulation fitting. Taking the curve as the input,the self-adapting change rules of the advance brack- et support force to the roadway surrounding rock pressure are simulated when the traditional PID control algorithm and neural network PID control algorithm are used. The results show that compared with the traditional PID control algo- rithm,the settling time of support force control system with neural network PID control algorithm is about 2 s,which is shortened by 16 times,and the overshoot is about 6% ,and the dynamic performance is improved,and the surrounding rock pressure tracking error is only 0. 005 5,improved by 6. 8 times. The research results show that the advance brack- et control system based on the neural network PID control strategy can control the support force of the advance bracket adaptively with the pressure of the surrounding rock and its control effect is more advantageous than that with the tradi- tional PID control strategy.
  • 期刊类型引用(17)

    1. 马宏伟,孙思雅,王川伟,毛清华,薛旭升,刘鹏,田海波,王鹏,张烨,聂珍,马柯翔,郭逸风,张恒,王赛赛,李烺,苏浩,崔闻达,成佳帅,喻祖坤. 论“掘进就是掘模型”的学术思想. 煤炭学报. 2025(01): 661-675 . 本站查看
    2. 张帆,邵光耀,李昱翰,李玉雪. 基于数字孪生和深度强化学习的矿井超前液压支架自适应抗冲支护方法. 工矿自动化. 2024(06): 23-29+45 . 百度学术
    3. 马宏伟,李烺,薛旭升,王川伟,王赛赛,赵英杰,周文剑,张恒. 护盾式临时支护机器人带压行驶液压控制系统研究. 工矿自动化. 2024(07): 21-31 . 百度学术
    4. 马长青,李峰,黄昱博,毛俊杰,李旭阳,魏祥宇,马肖杨. 基于模糊PID的自移式临时支架自适应控制研究. 工矿自动化. 2024(12): 76-84 . 百度学术
    5. 刘少杰,郭俊生,刘治翔,王振福,李玉岐,谢苗,王帅. 煤矿井下迈步自移式超前支护装备转弯特性分析. 煤炭工程. 2023(01): 168-174 . 百度学术
    6. 田劼,李阳,张磊,刘振. 基于PSO-BP神经网络的临时支架支撑力自适应控制. 工矿自动化. 2023(07): 67-74 . 百度学术
    7. 巩永春,孙晓虎,李伟东,汪义龙,刘杰,谢苗,刘治翔,邹康. 超前支护装备与掘进机协同作业干涉性分析. 煤炭工程. 2023(10): 118-124 . 百度学术
    8. 宋亚新,谷树伟,于明生,王永峰,刘治翔. 掘锚一体机机载式探放水钻机设计. 机电产品开发与创新. 2022(04): 39-42 . 百度学术
    9. 梁运德,陈守明,卢妍倩,李雪武,余顺怀. 基于包络特征的IDC网络自适应流量调控方法. 计算机与现代化. 2021(03): 7-11 . 百度学术
    10. 张坤,李玉霞,钟东虎,孟祥军,黄庆学,徐亚军,陈洪月,马英,张德生,黄梁松,苏金鹏. 超前液压支架群组–锚固耦合支护力学特性研究及实验验证. 岩石力学与工程学报. 2021(07): 1428-1443 . 百度学术
    11. LI Sanxi,QIAO Hongbing,XUE Guanghui. Research on Robotized Advance Support and Supporting Time for Deep Fully Mechanized Excavation Roadway. Instrumentation. 2021(01): 61-73 . 必应学术
    12. 汪宏宇,龚循强,鲁铁定,陈志平. 基于马尔科夫链的曲线拟合法在尾矿坝沉降预测中的应用. 东华理工大学学报(自然科学版). 2021(04): 364-369 . 百度学术
    13. 李瑞,张敏骏,王鹏江,沈阳,吴淼. 基于局域栅格化的履带支护车自主导航方法研究. 矿业科学学报. 2020(04): 423-434 . 百度学术
    14. 刘倩倩. 液压支架自适应控制研究. 能源与节能. 2020(10): 94-95+109 . 百度学术
    15. 高全军. 井下液压支架自适应控制系统. 能源与节能. 2020(10): 135-136 . 百度学术
    16. 连佳亮. 掘进机截割部运动行程的优化探究. 能源与节能. 2020(10): 191-192 . 百度学术
    17. 李瑞,蒋威,王鹏江,程佳萌,吴淼. 自移式临时支架的异步耦合调平控制方法. 煤炭学报. 2020(10): 3625-3635 . 本站查看

    其他类型引用(8)

图(10)
计量
  • 文章访问数:  1203
  • HTML全文浏览量:  4
  • PDF下载量:  431
  • 被引次数: 25
出版历程
  • 网络出版日期:  2023-04-10
  • 发布日期:  2019-11-29

目录

    /

    返回文章
    返回
    x 关闭 永久关闭