K2CO3催化煤炭不完全气化联产高强度颗粒炭及富氢合成气研究

刘朋, 王焦飞, 姚敏, 宋旭东, 吕鹏, 白永辉, 于广锁

刘朋, 王焦飞, 姚敏, 等. K2CO3催化煤炭不完全气化联产高强度颗粒炭及富氢合成气研究[J]. 煤炭学报, 2023, 48(S2): 728-739. DOI: 10.13225/j.cnki.jccs.2022.1416
引用本文: 刘朋, 王焦飞, 姚敏, 等. K2CO3催化煤炭不完全气化联产高强度颗粒炭及富氢合成气研究[J]. 煤炭学报, 2023, 48(S2): 728-739. DOI: 10.13225/j.cnki.jccs.2022.1416
LIU peng, WANG Jiaofei, YAO Min, et al. Co-production of high strength extruded activated carbon and hydrogen-rich syngas via K2CO3 catalytic incomplete gasification of coal[J]. Journal of China Coal Society, 2023, 48(S2): 728-739. DOI: 10.13225/j.cnki.jccs.2022.1416
Citation: LIU peng, WANG Jiaofei, YAO Min, et al. Co-production of high strength extruded activated carbon and hydrogen-rich syngas via K2CO3 catalytic incomplete gasification of coal[J]. Journal of China Coal Society, 2023, 48(S2): 728-739. DOI: 10.13225/j.cnki.jccs.2022.1416

K2CO3催化煤炭不完全气化联产高强度颗粒炭及富氢合成气研究

详细信息
    作者简介:

    刘朋(1984-),男,宁夏人中宁人,高级工程师,博士研究生。Tel:0951-6963171,E-mail:363843533@qq.com

    通讯作者:

    姚敏(1965-),男,宁夏银川人,教授,博士生导师,博士。Tel:0951-2062061,E-mail:ndglym@163.com

  • 中图分类号: TQ530.2

Co-production of high strength extruded activated carbon and hydrogen-rich syngas via K2CO3 catalytic incomplete gasification of coal

  • 摘要: 煤气化技术是煤炭清洁高效利用的重要技术。然而,煤气化过程气化碳转化率无法达到100%并产生大量废渣,而细渣中高含量且孔隙发达的残炭提取困难,使得大量堆积的细渣很难资源化利用。从细渣产生的源头出发,采用低灰煤圆柱状成型煤颗粒在K2CO3催化下进行不完全气化(在碳转化率达到70%~80%时终止气化)联产高性能活性炭及富氢合成气,并研究气化气体产物组分和所制备K掺杂活性炭AC-Kx的CO2吸附性能及K对CO2吸附性能的影响。结果表明:在纯水蒸气气氛下,外部热源供热气化终温950℃条件下,Kx催化不完全气化气体产物中H2/CO体积分数比值在2.20~6.29,氢碳比f在1.37~2.32。与未掺杂钾的样品相比,K2CO3催化气体产物的氢碳比显著提高;气化后期产生的气体中CO和CO2体积分数偏高,说明不完全气化及时终止气化反应可提升合成气的氢碳比,同时降低煤气化工艺的碳排放;当K2CO3掺配量为原料煤的5%时,所制备活性炭AC-K5的BET比表面积达到1 051 m2/g,亚甲基蓝吸附值达到215 mg/g,耐磨强度95.8%。在200℃中温条件下,AC-K5的CO2吸附量较未掺杂活性炭提升1.63倍。通过K催化煤颗粒不完全气化在生产富氢合成气的同时可联产用于CO2捕集的高强度颗粒炭,提升了煤催化气化的经济性。
    Abstract: Coal gasification technology is an important technology for clean and efficient utilization of coal. However, the carbon conversion of coal gasification process cannot reach 100% and thus a large amount of waste slag containing carbon residue is produced. The high content of porous carbon residue in the fine slag is difficult to extract, which results in the difficult utilization of large accumulation of fine slag. In this paper, starting from the source of fine slag formation, the low ash cylindrical coal particles were incompletely gasified over K2CO3 catalyst(the gasification was terminated when the carbon conversion rate reached about 70%-80%)to produce hydrogen-rich syngas and K-doped activated carbon (AC-Kx)with high-performance. The components of gasification gas and the CO2 adsorption performance of AC-Kx as well as the role of residual K in AC-Kx were also investigated. The results show that at the gasification final temperature of 950℃, the H2/CO ratio and the hydrogen-carbon ratio f could reach 2.20-6.29 and 1.37-2.32, respectively, in the gas product from K2CO3 catalytic incomplete steam gasification. Compared with the sample without potassium doping, the f of gas products from the K-doped samples increased significantly. The volume fraction of CO and CO2 in the gas produced in the later stage of gasification was high, indicating that the incomplete gasification and timely termination of gasification reaction could increase the hydrogen-carbon ratio of syngas and reduce the carbon emission of coal gasification process. When the addition amount of K2CO3 was up to the 5% of coal mass, the BET specific surface area, methylene blue adsorption value and the abrasive resistance of resultant AC-K5 reached 1 051 m2/g, 215 mg/g and 95.8%, respectively. At 200℃, the CO2 adsorption capacity of AC-K5 was 1.63 times higher than that of AC-K0. It can be concluded that the incomplete gasification of coal particles catalyzed by K2CO3 can simultaneously produce hydrogen-rich syngas and the activated carbon with high abrasive resistance for CO2 capture, improving the economy of coal catalytic gasification.
  • [1] 龚晓峰,荆琦,张景康,等.现代煤化工行业原子经济性分析[J]. 当代化工研究,2016,9(9):114-116.

    GONG Xiaofeng,JING Qi,ZHANG Jingkang,et al.Atomic economy analysis of modern coal chemical industry [J]. Contemporary Chemical Research,2016,9(9):114-116.

    [2] 王欢,范飞,李鹏飞,等.现代煤气化技术进展及产业现状分析[J].煤化工,2021,49(4):52-56.

    WANG Huan,FAN Fei,LI Pengfei,et al. Analysis on the progress of modern coal gasification technology and its industrial status[J]. Coal Chemical Industry,2021,49(4):52-56.

    [3] 宋旭东,王焦飞,白永辉,等. 煤焦颗粒反应及残碳赋存机理研究[C]//第四届能源转化化学与技术研讨会摘要集.2021:75.
    [4] 吴昊东,邵丰华,吕鹏,等.气流床煤气化细渣结构、性质与其粒度分布关系研究[J].燃料化学学报,2022,50(5):513-522.

    WU Haodong,SHAO Fenghua,LYU Peng,et al.Study on the relationship between the structure, properties and particle size distribution of entrained flow coal gasification fine slag[J].Journal of Fuel Chemistry,2022,50(5):513-522.

    [5] 薛中华,董连平,刘安,等.气化细渣疏水-亲水双液分离可行性与机理分析[J]. 煤炭学报,2022,47(6):2472-2482.

    XUE Zhonghua, DONG Lianping, LIU An, et al. Feasibility and mechanism analysis of hydrophobic hydrophilic double liquid separation of gasification fine slag [J]. Journal of Coal Industry, 2022,47(6):2472-2482.

    [6] 汪伦,李寒旭,赵帅,等.不同粒径气化细渣的残炭形态及燃烧特性[J].煤炭转化,2021,44(5):47-56.

    WANG Lun, LI Hangxu, ZHAO Shuai, et al. Char morphology and combustion characteristics of gasification fine slag with different particle sizes[J]. Coal Conversion,2021,44(5):47-56.

    [7]

    GAO Shengtao,ZHANG Yuanchun,LI Hanxu,et al.The microwave adsorption properties of residual carbon from coal gasification fine slag[J].Fuel,2021,290:120050.1-120050.8.

    [8] 吕登攀,白永辉,王焦飞,等.气流床气化细渣中残炭的结构特征及燃烧特性研究[J].燃料化学学报,2021,49(2):129-136.

    LYU Dengpan, BAI Yonghui, WANG Jiaofei, et al. Study on the structure and combustion characteristics of carbon residue in entrained flow gasification fine slag[J].Journal of Fuel Chemistry, 2021,49(2):129-136.

    [9] 张元春. 粉煤气化细渣形成及其残炭基电磁波吸收材料性能评价[D]. 淮南:安徽理工大学,2021.

    ZHANG Yuanchun. Formation of fine slag from pulverized coal gasification and performance evaluation of carbon residue based electromagnetic wave absorber[D]. Huainan:Anhui University of Science and Technology,2021.

    [10] 马超. 气化渣基氨氮吸附剂的制备及其性能研究[D].太原:太原理工大学,2021.

    MA Chao. Study on preparation and properties of ammonia nitrogen adsorbent based on gasification slag [D]. Taiyuan:Taiyuan University of Technology,2021.

    [11]

    GUO Fanhui,MIAO Zekai,GUO Zhenkun,et al. Properties of flotation residual carbon from gasification fine slag [J]. Fuel,2020, 267:117043.1-117043.8.

    [12]

    GUO Fanhui,ZHAO Xu,GUO Yang,et al. Fractal analysis and pore structure of gasification fine slag and its flotation residual carbon [J]. Colloids and Surfaces, A. Physicochemical and Engineering Aspects,2020:585.

    [13] 叶军建,高占彬,吕超,等.某干粉煤气化细渣特征及浮选回收残炭研究[J].矿业研究与开发,2021,41(10):138-141.

    YE Junjian,GAO Zhangbin,LÜ Chao,et al. Study on the characteristics of fine slag from a dry powder coal gasification and the recovery of carbon residue by flotation[J].Mining research and development,2021,41(10):138-141.

    [14] 高影,赵伟,周安宁,等.水煤浆气化细渣的组成结构特征及干法脱炭研究[J].燃料化学学报,2022,50(8):954-965.

    GAO Ying,ZHAO Wei,ZHOU Anning,et al.Study on composition, structure and dry decarbonization of coal water slurry gasification fine slag[J].Journal of Fuel Chemistry,2022,50(8):954-965.

    [15] 任振玚,井云环,樊盼盼,等.气化渣水重介选及其分离炭制备脱硫脱硝 活性 焦试 验研 究[J]. 煤炭 学报, 2021, 46(4):1164-1172.

    REN Zhenchang,JING Yunhuan,Fan Panpan,et al. Experimental study on preparation of activated coke for desulfurization and denitration from gasification slag water by dense medium separation and carbon separation[J].Journal of Coal Industry,2021,46(4):1164-1172.

    [16] 史达,张建波,杨晨年,等.煤气化灰渣脱碳技术研究进展[J]. 洁净煤技术,2020,26(6):1-10.

    SHI Da,ZHANG Jianbo,YANG Chennian,et al.Research progress of coal gasification ash decarbonization technology[J]. Clean Coal Technology,2020,26(6):1-10.

    [17]

    HUANG Y J,ZHOU H C,JING B S,et al. Air and steam coal partial gasification in an atmospheric fluidized bed[J].Fuels,1986, 24:266-269.

    [18]

    XIAO Rui ZHANG Mingyao,JIN Baosheng,et al. Air blown partial gasification of coal in a pilot plant pressurized spout-fluid bed reactor[J]. Fuel,2007,86:1631-1640.

    [19]

    ZHANG Jianbo,ZHANG Guorong,QI Meng,et al. Coproduction of hydrogen-rich gas and porous carbon by partial gasification of coal char[J].Chemicke Zvesti,2018,72(2):273-287.

    [20]

    DILOKEKUNAKUL,WARALEE,TEERACHAWANWONG,et al. Effects of nitrog-en and oxygen functional groups and pore width of activated carbon on carbon dioxide capture:Temperature dependence [J]. Chemical Engineering Journal, 2020, 389:124413-1-24413-11.

    [21]

    ZHANG Shuang,ZHOU Qiying,JIANG Xie,et al. Preparation and evaluation of nitrogen-tailored hierarchical meso-/micro-porous activated carbon for CO2 adsorption[J]. Environmental Technology, 2020,41(25/28):3544-3553.

    [22]

    LOZANO-CASTELLO D,A.LILLO-RODENAS M,CAZORLA-AMOROS D,et al.Preparation of activated carbons from Spanish anthracite (I.Activation by KOH)[J].Carbon:An International Journal Sponsored by the American Carbon Society, 2001, 39(5):741-749.

    [23]

    MIAO Zekai,XU Jie,CHEN Liqing,et al. Hierarchical porous composites derived from coal gasification fine slag for CO2 capture:Role of slag particles in the composites[J]. Fuel:A Journal of Fuel Science,2022,309:122334.1-122334.10.

    [24] 卫俊涛,丁路,周志杰,等.负载碳酸钾煤焦CO2催化气化反应特性的原位研究[J].燃料化学学报,2015,43(11):1311-1319.

    WEI Juntao,DING Lu,ZHOU Zhijie,et al.Study on CO2 catalytic gasification of coal coke supported with potassium carbonate[J]. Journal of Fuel Chemistry,2015,43(11):1311-1319.

    [25]

    BAO Xiaodan,SHEN Zhoujie,ZHANG Haigang,et al. Evaluation of the catalytic effect and migration behavior of potassium in the molten slag during the char/molten slag interfacial gasification [J]. Fuel:A Journal of Fuel Science, 2022, 307:121881. 1-121881.11.

    [26]

    SANSHA Coetzee,HEIN W J P Neomagus,JOHN R. Bunt,et al. Improved reactivity of large coal particles by K2CO3 addition during steam gasification [J]. Fuel Processing Technology, 2013, 114, 75-80.

    [27]

    ATUL Sharma,IKUO Saito,TOSHIMASA Takanohashi. Effect of steam partial pressure on gasification rate and gas composition of product gas from catalytic steam gasification of hyper coal[J].Fuels,2009,23(5):4887-4892.

    [28] 葛明. 不同炭质多孔材料对二氧化碳的吸附性能比较[D].上海:华东理工大学,2011.

    GE Ming. Comparison of carbon dioxide adsorption properties of different carbonaceous porous materials [D]. Shanghai:East China University of Science and Technology,2011.

    [29]

    SHAO Lishu,LIU Mingqiang,HUANG Jianhan,et al. CO2 capture by nitrogen-doped porous carbons derived from nitrogen-containing hyper-cross-linked polymers[J]. Journal of Colloid And Interface Science,2018,513:304-313.

    [30]

    WU Dawei,YANG Yingju,LIU Jing,et al. Plasma-modified N/O-doped porous carbon for CO2 capture:An experimental and theoretical study[J]. Energy & Fuels,2020,34(5):6077-6084.

    [31]

    SHAHABUDDIN M,BHATTACHARYA Sankar.Process modelling for the production of hydrogen-rich gas from gasification of coal using oxygen, CO2 and steam reactants[J]. International Journal of Hydrogen energy,2021,46(47):24051-24059.

    [32]

    WU Xuantao,WANG Jie. K2CO3-catalyzed steam gasification of ash-free coal char in a pressurized and vertically blown reactor. Influence of pressure on gasification rate and gas composition[J]. Fuel Processing Technology,2017,159:9-18.

    [33]

    YANG Qingchun,LI Xufang,YANG Qing,et al. Opportunities for CO2 utilization in coal to green fuel process:Optimal design and performance evaluation [J]. ACS Sustainable Chemistry & Amp, Engineering,2020,8(3):1329-1342.

计量
  • 文章访问数:  22
  • HTML全文浏览量:  1
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-30
  • 修回日期:  2022-10-31
  • 网络出版日期:  2024-03-07

目录

    /

    返回文章
    返回
    x 关闭 永久关闭