涂敏,郭福鑫,张向阳,等. 锚索丝轴向受力−破断能量聚散演化与吸能防护机理[J]. 煤炭学报,2024,49(8):3353−3365. DOI: 10.13225/j.cnki.jccs.2023.1006
引用本文: 涂敏,郭福鑫,张向阳,等. 锚索丝轴向受力−破断能量聚散演化与吸能防护机理[J]. 煤炭学报,2024,49(8):3353−3365. DOI: 10.13225/j.cnki.jccs.2023.1006
TU Min,GUO Fuxin,ZHANG Xiangyang,et al. Axial force-breaking energy accumulation and dissipation evolution and energy absorption protection mechanism of anchor cable wire[J]. Journal of China Coal Society,2024,49(8):3353−3365. DOI: 10.13225/j.cnki.jccs.2023.1006
Citation: TU Min,GUO Fuxin,ZHANG Xiangyang,et al. Axial force-breaking energy accumulation and dissipation evolution and energy absorption protection mechanism of anchor cable wire[J]. Journal of China Coal Society,2024,49(8):3353−3365. DOI: 10.13225/j.cnki.jccs.2023.1006

锚索丝轴向受力−破断能量聚散演化与吸能防护机理

Axial force-breaking energy accumulation and dissipation evolution and energy absorption protection mechanism of anchor cable wire

  • 摘要: 针对深部高应力巷道顶板锚索在拉伸、剪切、扭转等复合作用下,积聚应变能瞬间释放,引发锚索抽丝破断弹射事故,严重影响煤矿安全生产。以张集矿1421(3)锚索支护巷道为工程背景,运用理论分析、数值模拟、实验室试验相结合的研究方法,揭示锚索−围岩能量孕育演化机制与锚索防护装置吸能防护机理。结果表明:由锚索丝单轴拉伸试验与全量本构模型得到锚索丝破断应变能密度为55 MJ/m3,锚索丝破断弹射释放能量与锚索丝破断长度、轴力、直径呈正相关。根据数值模拟,锚索距顶板0.6 m处剪切应力集中,易发生锚索抽丝破断弹射,长度0.8 m锚索丝弹射初速度为102 m/s。通过仿真模拟结合强度理论,原方案锚索吸能防护装置冲击荷载极限为20 m/s,增加锚索防护装置底座护壁使冲击荷载极限提升至200 m/s,有效解决锚索丝冲击防护装置偏转失效问题。基于锚索防护装置静态拉伸试验与自由落体冲击试验对数值模拟结果进行可靠性验证,获得防护装置最大吸能阈值为1 189 J;无护壁防护装置弹簧底座在冲击力作用下产生侧向偏移,弹簧底部剪切破坏;增加弹簧底座护壁,可有效约束底座偏移,充分发挥弹簧拉伸吸能特性,防止弹簧剪切损伤后失效,试验结果与数值模拟结果相符。研究成果为同规格锚索巷道支护设计、锚索抽丝破断弹射与防护提供借鉴。

     

    Abstract: The roof anchor cable in deep high stress roadway under the combined action of tension, shear, torsion and so on, could release accumulated strain energy instantaneously, causing the ejection accident due to anchor cable breaking, which seriously affects the safe production of coal mines. Based on the engineering background of the 1421 (3) anchor cable supporting roadway in the Zhangji Mine, the research methods of theoretical analysis, numerical simulation and laboratory test are used to reveal the energy evolution mechanism of anchor cable-surrounding rock and the energy absorption protection mechanism of anchor cable protection device. The results show that the fracture strain energy density of anchor wire is 55 MJ/m3 obtained by uniaxial tensile test and full constitutive model of anchor wire. The ejection energy released by anchor wire is positively correlated with the fracture length, axial force and diameter of anchor wire. According to the numerical simulation, the shear stress is concentrated at 0.6 m from the roof of the anchor cable, and the anchor cable is easy to break and eject. The initial velocity of the anchor cable with a length of 0.8 m is 102 m/s. Through simulation and strength theoretical analysis, the impact load limit of the original anchor cable energy absorption protection device is obtained as 20 m/s, and the impact load limit is increased to 200 m/s by increasing the base wall of the anchor cable protection device, which effectively solves the deflection failure problem of the anchor cable impact protection device. Based on the static tensile test and free fall impact test of the anchor cable protection device, the reliability of the numerical simulation results is verified, and the maximum energy absorption threshold of the protection device is 1189 J. Under the action of impact force, the spring base without protection device has a lateral offset and a shear failure at the bottom of the spring. Increasing the wall protection of the spring base can effectively restrain the base offset, give full play to the tensile energy absorption characteristics of the spring, and prevent the failure of the spring after shear damage. The test results are consistent with the numerical simulation results. The research results provide a reference for the roadway support design of the same specification parameter anchor cable, the ejection and protection of the anchor cable wire drawing breaking.

     

/

返回文章
返回