Prospects for the development of the theory and technology of non-hydration penetration enhancement in soft coal seams
-
摘要:
在未来相当长的历史时期内,我国仍然要坚持以煤为主的基本国情。煤炭作为兜底保障能源,其高效开采对我国能源安全极为关键。但我国70%以上的煤层为低渗煤层,瓦斯抽采难度大、时间长。瓦斯抽采率低导致的采掘失衡是遏制煤炭产能释放的首要因素。尤其是随着浅部资源的枯竭,深部资源复杂赋存环境将使这一问题更加凸显。因此对低渗煤层增透是实现瓦斯高效抽采、解决采掘失衡、提高煤炭产量的有效手段。水力冲孔、水射流割缝和水力压裂等水力化技术因其技术装备成熟、应用灵活,是目前使用范围最广、行之有效的增透技术。然而在松软煤层应用水力化技术时,钻孔易出现塌孔,导致抱钻、喷孔、瓦斯超限等问题。相较于水力化技术,无水化技术从源头上避免了水对煤体强度的软化。采用无水化技术增透松软煤层,能实现瓦斯通道长时间保持通畅,具备高效抽采能力,符合新质生产力的发展理念。因此,无水化技术是目前突破松软煤层瓦斯高效抽采技术瓶颈的可行性方法。无水化技术种类繁多,但均没有在工程中得到应用或推广。为寻求无水化技术在瓦斯抽采领域的发展方向,促进无水化技术发展,突破松软煤层瓦斯高效抽采技术瓶颈,本文系统梳理了机械刀具、可控冲击波及(磨料)空气射流等10种无水化增透技术,并将其归纳为3类:机械类增透技术、电磁波/机械波增透技术及气体相关增透技术。详细阐述了其技术原理、增透机制、优势及瓶颈,提出了无水化技术在松软煤层瓦斯抽采工程中发展的可行性建议。形成以下主要结论:无水化技术是以机械力、冲击力或热应力的作用形式破裂煤岩,形成卸压区域、裂隙网络,促进瓦斯解吸、渗流,提高瓦斯抽采率。受能量密度和力传递方式的制约,多数无水化技术相较于水力化技术的卸压范围小。这是遏制无水化技术工程应用的主要因素。此外,技术装备的成熟度,可操作性和适用性也是遏制其应用的重要因素。低压(磨料)空气射流在松软煤层应用中发现,在气体压力小于1 MPa条件下,扩孔半径仍可大于1 m,能够实现煤层大范围的均匀卸压。综合能量传递效率和技术装备成熟度,低压(磨料)空气射流在进一步完善安全保障技术的条件下,具有应用推广的潜力。
Abstract:In the future quite a long historical period, China will still adhere to the basic national conditions of coal. The efficient exploitation of coal, as a guarantee energy source, is crucial to China's energy security. However, more than 70% of coal seams in our country are low-permeability coal seams, and gas extraction is difficult and long. The mining imbalance caused by low gas extraction rate is the primary factor to curb the release of coal production capacity. Especially with the depletion of shallow resources, the complicated occurrence environment of deep resources will make this problem more prominent. So Penetration enhancement of low-permeability coal seams is an effective means of realising efficient gas extraction, solving the imbalance between mining and excavation, and then increasing coal production. Hydraulic technology such as hydraulic punching, water jet cutting and hydraulic fracturing is the most widely used and effective penetration enhancement technology due to its mature technical equipment and flexible application. However, when applying hydraulic technology in soft coal seams, the drilling holes are prone to collapse, which leads to problems such as drill holding, hole blowing, and gas overlimit. Compared with hydraulic technology, non-hydraulising technology avoids the softening of coal strength by water from the source. The use of non-hydraulising technology to increase the penetration of soft coal seams enables the gas channel to be kept open for a long time, and has the ability of efficient extraction, which is in line with the development concept of new quality productivity. Therefore, non-hydraulic technology is a feasible way to break through the bottleneck of high-efficiency gas extraction technology in soft coal seams. There are many kinds of non-hydraulic technology, but none of them has been applied or promoted in engineering. To seek the development direction of non-hydraulic technology in the field of gas extraction, promote the development of non-hydraulic technology, and break through the bottleneck of high-efficiency soft coal seam gas extraction technology, this paper systematically combs through 10 non-hydraulic penetration enhancement technologies, such as mechanical cutters, controllable shock waves, and abrasive air jets, and classifies them into three categories: mechanical penetration enhancement technology, electromagnetic wave/mechanical wave penetration enhancement technology, and gas-related penetration enhancement technology. Their technical principles, penetration enhancement mechanisms, advantages and bottlenecks are elaborated in detail, and feasibility suggestions for the development of non-hydraulic technology in soft coal seam gas extraction engineering are put forward. The following main conclusions are formed: the non-hydraulic technology crushes coal rock in the form of mechanical force, impact or thermal stresses, forming pressure relief areas and fissure networks, promoting gas desorption and seepage, and then improving the gas extraction rate. Subject to the constraints of energy density and force transmission method, most non-hydraulic technology has a small pressure relief range compared with hydraulic technology. This is the main factor that curbs the engineering application of non-hydraulic technology. In addition, the maturity, operability and applicability of the technology and equipment are also important factors that inhibit its application. In the application of low-pressure abrasive air jet in soft coal seam, it is found that under the condition of gas pressure less than 1 MPa, the radius of reaming can still be more than 1 m, which can realise the uniform pressure unloading in a wide range of coal seam. Combining the energy transfer efficiency and the maturity of the technology and equipment, the low-pressure abrasive air jet has the potential to be applied and promoted under the condition of further improving the safety guarantee technology.
-
Keywords:
- soft coal seam /
- non-hydraulic technology /
- pressure relief /
- gas extraction /
- air jet
-
0. 引 言
煤炭作为我国主体能源,是能源供应的“压舱石”[1-3]。以煤为主的资源禀赋,是我国未来长时期的基本国情。煤炭高效开采是目前应对能源紧张局势的有效手段[4-6]。然而我国大部分地区煤炭资源不仅赋存条件复杂,而且存在冲击地压[7-9]、突水[10-12]、地热[13-14]、瓦斯等灾害。尤其是瓦斯灾害已成为限制煤炭产能释放的首要因素[15-19]。在我国所有开采矿井中,高瓦斯和突出矿井的比例高达46%[20],且随矿井向深部延伸,比例会继续增大[21-22]。高效的瓦斯抽采和治理技术是保障煤炭安全开采的重要前提[23-24]。经过几十年的技术研发和经验积累,我国已形成了较完善的井下瓦斯抽采和治理技术。通过开采保护层,并在首层或单一煤层进行瓦斯预抽[25-26],能够较好控制瓦斯灾害的发生[27]。
在“双碳”目标及新能源架构下,“管得住瓦斯灾害”的治理思路,已不能满足我国对煤炭资源的需求及社会经济发展的要求。我国72%的煤层透气性要低于0.1×10−15 m2、瓦斯压力要高于6.5 MPa[28],属于难抽采低渗煤层。而这其中大多数煤层的坚固性系数还会低于0.6。在低渗煤层瓦斯治理中,由于瓦斯抽采难度大、浓度低、流量衰减快,导致瓦斯预抽时间长[29-31]。目前,瓦斯的治理周期普遍在6个月到2年,在某些矿井的工作面,瓦斯预抽时间甚至长达10 a。瓦斯预抽周期长严重遏制了产能释放。因此,瓦斯治理从“管得住”过渡到“治得好、治得快”,缩短瓦斯抽采周期,是提高煤炭产量的必由之路[32-33]。
煤层增透是提高瓦斯抽采效率的有效手段。尤其在低渗煤层中实施卸压增透技术,能极大缩短瓦斯抽采周期,降低治理成本。水力化措施是煤层常用的增透技术。包括有水力冲孔[34-37]、水力压裂[38-42]和水射流割缝[43-46]等。水力冲孔是利用中/高压力、大排量的水破碎煤体、扩大钻孔直径,进而促进地应力重新分布、诱发煤层生成裂隙场,提高煤层透气性[47-48]。水力压裂是利用压裂液在煤层中形成单一宏观裂缝,并促使弱面内的裂隙、裂纹扩展、延伸,形成贯通网络,提高煤层透气性[49-50]。水射流割缝是利用高压水射流技术在煤层中构造等间距的圆盘状孔洞,并通过协调孔洞半径及高度,在保证煤体稳定性的同时,形成均匀连续的卸压区域、多维度裂隙网络,提高瓦斯抽采率[51-52]。
水力化技术是煤层有效的卸压增透措施,尤其适用于坚固性系数适中(0.35 < f < 0.7)[53-55]、赋存稳定的煤层。水力化技术很大程度上提高了瓦斯抽采效率,推动了瓦斯治理的进步,是目前使用范围最广、行之有效的技术。然而水力化技术在松软煤层应用时,却遇到了技术瓶颈。在水的软化作用下,松软煤层易出现大区域垮落,导致钻孔出现堵孔、喷孔、抱钻、卡钻等问题,引起工作面瓦斯超限、钻具断裂等事故[56-57]。瓦斯抽采过程中,受蠕变和残余水的泥化作用,卸压孔洞会继续垮塌,堵塞瓦斯运移通道[58]。即使采用全程下筛管的抽采方式,仍不能避免筛管孔眼堵塞,瓦斯抽采流量急剧降低的问题。不仅如此,水力化技术实施后,煤层含水量增大,还会产生水锁效应[59-60],抑制裂隙中瓦斯解吸,导致瓦斯的预抽时间延长、残余含量增大。
为突破松软煤层瓦斯高效抽采技术瓶颈,诸多无水化增透技术被提出。由于没有水的参与,无水化增透技术从源头上解决了因水导致的煤体软化、泥化和水锁效应等,在一定程度上弥补了水力化技术不足。现有无水化增透技术种类繁多。依据破坏、致裂煤体的动力,无水化增透技术可分为机械类增透技术,如机械刀具扩孔、柔性刀具扩孔[61-63]。机械刀具扩孔技术,采用钻机带动可变径刀具旋转截割煤体扩大钻孔直径至300 mm,增大煤体卸压范围,提高煤体透气性。机械波与电磁波增透技术[64-67],如超声波增透、可控冲击波增透。西安交通大学邱爱慈院士团队研发了可控冲击波技术[68],通过向煤体内发射冲击波,在钻孔周边煤体构建裂隙网络,并促进瓦斯解吸,提高瓦斯抽采效率。气体相关增透技术,如高压气体爆破增透、磨料空气射流割缝等[69-71]。曹运兴教授团队研制的二氧化碳相变致裂技术,通过液态二氧化碳相变产生爆生气体增透煤层[72-73]。虽然目前已有较多无水化增透技术,但均没有在煤层增透中得到应用或推广,甚至某些技术仍停留在理论和实验研究阶段。在松软煤层中开展工程实践的无水化增透技术更是少之又少。
虽然无水化技术的发展举步维艰,但在松软煤层增透中已经展现出了极强优势,符合新质生产力的发展理念。为促进无水化增透技术的发展,寻求松软煤层瓦斯高效抽采技术思路,本文依据卸压增透的动力对无水化技术进行了系统的归纳梳理。深入分析了各技术的发展历史、增透机理及技术优势、发展瓶颈,展望了煤层无水化增透的应用前景,以期为无水化技术指明发展方向,为松软煤层瓦斯高效抽采探寻技术思路。突破松软煤层瓦斯高效抽采技术瓶颈,提高煤层瓦斯治理效率,充分释放煤炭产能,助力国家能源战略顺利实施。
1. 机械类增透技术
机械类增透技术是利用机械刀具的机械力(高静压力或冲击力)破碎煤岩,进行煤层卸压增透。机械类增透技术主要是通过提高机械刀具的作用范围,扩大钻孔直径,促进地应力重新分布,诱发煤层形成裂隙场。目前,机械类增透措施主要包括机械刀具扩孔技术,柔性刀具扩孔技术。
1.1 机械刀具扩孔增透技术
机械刀具扩孔技术是应用最为广泛的无水化卸压增透技术。其本质是扩大钻孔直径。增大钻孔直径是最简单有效、也是应用最早的提高卸压效果的方法技术。在20世纪60年代,我国阳泉矿务局与包头矿务局相继开展了煤层扩孔试验,将钻头直径由73 mm增大到89 mm。钻孔直径增大了16 mm,瓦斯抽采效率得到了很大提高[74-75]。随着钻机性能的不断提高,钻孔直径不断扩大,目前井下瓦斯抽采钻孔直径最大可达650 mm[76]。然而,在目前的井巷条件下,受钻机性能、功率和体积的限制,继续提高钻孔直径存在难度。基于此,铁福来公司于2016年研制出了可变径的机械刀具,实现了在不增加钻机功率的条件下对煤层进行大直径扩孔[77]。
机械刀具扩孔系统主要由钻机、钻杆、可变径刀具组成,如图1所示。可变径刀具是机械刀具扩孔的关键装置。在钻孔过程中,刀具并不展开,钻孔完成后,通过提高水压、离心力等方式对刀具施加外力,将刀具展开,钻机带动刀具进行旋转扩孔,随着钻杆后退,钻孔直径逐渐扩大,实现钻、扩一体化。
机械刀具通过扩大钻孔直径,能够实现钻孔周围4~5倍直径范围内的煤层卸压,促使应力集中区向煤层深部转移,减弱了钻孔周围的“瓶颈”效应。机械刀具扩孔卸压增透的机理,如图2所示。首先,在旋转刀具的机械力作用下,刀具直径范围内的煤体会破碎,形成全孔段大直径的均匀破碎空穴,在围岩应力作用下,破碎空穴提供的自由弱面会促使微裂纹发育、扩展,并贯通形成宏观裂隙区[79];在此基础上,通过合理的设置钻孔间距及深度,多个钻孔裂隙区能够相互贯通,形成大范围裂隙网络带,促使钻孔周围应力形成椭圆形分布,使得应力集中区向煤层深部转移。最终,减弱或消除钻孔周围的“瓶颈”效应,使得瓦斯沿裂纹通道流动至钻孔,实现瓦斯的高效抽采[80-84]。
目前,机械刀具扩孔技术广泛应用在坚固性系数为0.3 < f < 0.5的煤层中。尤其,应用于顺层钻孔的全孔段大直径扩孔。当煤层坚固性系数为0.3~0.5时,采用机械刀具扩孔,具有扩孔效率高,孔洞均匀、稳定的特点。同时,在钻孔轨迹和间距明确的前提下,机械刀具扩孔能够实现煤层的连续均匀卸压,避免出现空白带。但应用于坚固性系数f < 0.3的松软煤层时,因刀具破煤效率高,引起排渣不畅,使得未能及时排除的煤渣在刀具机构附近不断堆积,引起刀具收回机构堵塞,导致刀具无法闭合。尤其在构造煤层中或水动力驱动机械刀具时,刀具无法闭合问题更为严重。在坚固性系数f > 0.5的煤层中,由于煤体力学强度较大[85-86],需要较大的刀具截割力和钻机扭矩,容易导致刀具断裂。尤其,对于大直径扩孔,需要较长的刀具。刀具强度是遏制该技术在坚硬煤层进一步推广应用的主要原因。
目前,机械刀具扩孔半径大都在300 mm以下,其卸压范围相比水力冲孔、水射流割缝较小。机械刀具扩孔半径小的根本原因是无法制造出具有足够强度的长刀具。受扩孔范围的限制,机械刀具均匀卸压的优势并没有充分发挥[87]。另外,由于刀具的动力源于钻机,破煤过程中刀具受力无法反馈至钻机,从而不能实时掌握刀具受力和截割破煤状态。采用螺杆泵、气动马达等动力装置驱动刀具扩孔,不仅能够大大降低系统能耗,更能够通过气体压力变化监测刀具破煤动态参数。对调控刀具扩孔参数具有重要作用。
基于上述机械刀具在实际工程应用中刀具材质、动力结构尚存在优化空间等问题的分析。因此,机械刀具扩孔增透技术在未来的主要发展方向应是改变刀具动力机构;结合煤矿地质赋存情况,设计性能优良的机械刀具装置;突破材料技术瓶颈;优化刀具破煤参数;增大扩孔范围,实现均匀落煤,避免刀具堵塞。
1.2 柔性刀具扩孔增透技术
由1.1节可知机械刀具扩孔技术在煤层增透工程应用中优势突出,但仍存在设备能耗大、刀具强度低等不足。因此,为在确保扩孔直径增大的同时又降低系统能耗,笔者团队于2020年在机械刀具的基础上研发了柔性刀具扩孔技术。该技术通过改变动力传输方式与刀具结构,可在指定的钻孔位置实现煤层高效扩孔卸压增透。柔性刀具的装置系统,如图3所示,主要由动力装置、软管卷盘、柔性扩孔刀具组成。其中,根据输出装置的输出动力,分为水动力马达与气动力马达[88-91]。目前团队已对柔性刀具破煤性能进行相关实验研究,验证了柔性刀具扩孔技术具备破煤增透效果的能力[92]。
柔性刀具通过水/气动力马达产生的扭矩来带动其两侧柔性刀齿进行旋转扩孔,从而实现破煤增透。柔性刀具破煤增透机理,如图5所示。根据扩孔过程中破煤应力时效变化可分为如下阶段:首先,柔性刀具在机械力作用下旋转,刀具刀尖最先接触煤体,由于接触面积小,刀具接触位置处的煤体受高压应力作用发生破碎,形成压碎区。随后,刀具穿过压碎区煤体继续作用于煤体前端,在煤体内部产生应力场,实现对煤体的冲击损伤。随着刀具接触面积的增大,煤体会同时出现两种破坏形式,即煤体表面形成破碎坑,煤体内部裂纹形成与扩展。最终,在柔性刀具的持续作用下,煤体内会形成大直径卸压孔穴与大范围裂隙网络,实现煤层卸压增透[93-97]。破煤效果如图4所示。
柔性刀具扩孔可实现全硬度煤层扩孔增透。在坚固性系数0.3 < f < 0.5的煤层中,采用水动力柔性刀具,同机械刀具扩孔优势一致。在坚固性系数f < 0.3的松软煤层中应用时,宜采用气动力柔性刀具扩孔技术,可避免因水浸润引起的煤体强度劣化,钻孔蠕变、塌孔,水锁效应等问题[98]。
柔性刀具扩孔技术除刀具的改变,优化后的动力传输结构使得该技术具有更大的应用潜力。与机械刀具扩孔技术相比,钻机功率恒定时,由于气/水动力马达直接带动柔性刀具破煤,无需通过钻杆传递扭矩,极大提高了能量利用率,可实现更大直径煤层扩孔卸压。同时,技术所采用的气/水动力介质,可有效吸收、缓释钻遇硬岩时刀具的反作用力,降低设备震动,更能够通过气体压力变化监测刀具破煤动态参数,进而提高系统安全性。
柔性刀具扩孔作为重要的机械类增透措施之一,因其能耗比低,系统结构简单、成本低廉,具备研究价值。目前团队正在根据煤矿需求对柔性刀具开展进一步研究,主要解决在松软煤层中采用气动力马达时的温升问题,探求柔性刀具在受限空间内的运动形态和破煤机理。此外,根据实际煤层工况,设计出适合的柔性刀具也是技术应发展的方向。
2. 机械波与电磁波增透技术
机械波与电磁波增透技术是利用机械波/电磁波发生装置提供的振动、冲击或热效应破坏、致裂煤体,促进煤层的裂隙发育、扩展,瓦斯解吸、流动。目前,机械波和电磁波增透技术主要包括超声波增透技术、冲击波增透技术以及微波(电磁波)增透技术。
2.1 超声波增透技术
超声波,是一种频率超过20 000 Hz的机械波。19世纪末,超声波技术诞生并发展应用于空间测距、目标探测等领域[99]。早在20世纪50年代,美苏率先将超声波技术引入油层处理领域,以提升油层渗透率从而提高原油产量[100-102]。20世纪90年代,鲜学福院士[103-105]团队首次提出利用可控超声波技术来提高煤层渗透率的构想,其原理是利用超声波震动致裂煤体以促进瓦斯解吸。随后,国内外相关学者开始了超声波在煤层增透领域的研究。超声波增透系统主要由超声波发生器、超声换能器、电源、钻杆、超声波输送电缆等组成,具体结构如图6所示。
超声波增透是通过超声波发生器将电能转换成高频电信号,由电缆传输到钻孔内相应位置,并经换能器转换成超声机械振动(超声波)。超声波的增透原理,如图7所示。当超声波在煤体内部传播时,会对煤体产生机械效应、热效应和空化效应。在多种效应综合作用下,煤体裂隙发育、扩展,从而促进瓦斯解吸,实现煤层卸压增透。超声波可透过煤体表面直接作用于煤体内部,实现对煤体的无侵入式增透,促进煤体内瓦斯解吸。其增透效果受煤体温度[107]、孔隙结构[108]、含水率[109]和超声波发生功率[110-111]等因素的影响。煤体的含水率越高,煤体温度衰减越慢,超声波作用后裂隙发育越好[112]。
超声波技术虽然在煤层增透方面取得了一定效果,但是由于超声波的波长短,能量衰减快,导致该技术增透范围小[113]。而提升功率是提高超声波增透范围的最直接、有效措施。然而,随功率提升,需超声波发生设备的体积会更大、结构更复杂。此外,超声波技术在松软煤层应用时,由于钻孔易出现塌孔、堵塞,使得在目标位置处放置换能器变得困难。
因此,超声波增透技术未来发展与推广需要解决的关键技术瓶颈是减小超声波设备体积;探寻新颖的超声波发生装置与技术;进一步提高能量利用率及卸压增透范围。同时,探求合适该技术的煤层赋存地质,做到精准技术与工况地质匹配也是此措施未来要解决的问题。
2.2 冲击波增透技术
20世纪70年代以来,国内外开始将高压电脉冲冲击波技术应用于石油井开采领域。2010年,我国邱爱慈院士团队提出采用基于电脉冲功率技术的重复可控冲击波来激励煤层的设想,并研制了用于现场作业的可控冲击波发生装置,主要包括储能电容器、能量控制器和能量转换器等,结构如下图8所示[114]。随后,国内外相关学者逐渐开展冲击波技术在煤层增透领域的相关研究[115-118]。
可控冲击波增透是将电能通过能量转换器转换为冲击波。利用冲击波循环致裂破碎煤体。可控冲击波增透的原理,如图8所示。当具有高入射能的冲击波作用于煤体后,煤体会出现破碎、撕裂、弹性声波扰动等[119-121]响应特征。在此基础上,重复运行冲击波的驱动源,使得煤层产生疲劳效应,致使裂隙不断扩展、贯通和丰富,从而实现煤层增透。
可控冲击波技术采用纯物理方法,对地层几乎无污染。同时该技术在分级积蓄能量后通过能量转换器瞬间释放能量,产生的冲击波能量密度高,对外做功能力强。开发的水中金属丝爆炸产生冲击波的新技术使得能量转化效率达到24%[122-123]。可控冲击波致裂煤体效果,如图9所示。可控冲击波在工程应用中,可通过调控冲击波的作用位置、频率和重复次数,可实现煤层的定向、分段及分层位的可控性精细改造。
无论液电效应还是金属丝电爆炸产生冲击波,所能输出的冲击波能量仅来源于冲击波驱动源所储存的能量。因此,存储能量的大小直接决定了可控冲击波作用范围。在松软煤层应用时,冲击波作用下使得煤层产生破碎区、裂纹扩展区及压实区。对于压实区的煤体,因其渗透率降低,会导致瓦斯难以有效解吸、抽采,形成“瓶颈”效应。此外,由于冲击波与水、瓦斯、煤岩的相互作用规律和机理迄今尚不清晰[125],限制了相关增透装置和技术的研发与推广。
因此,为实现可控冲击波技术的有效推广,需不断完善理论体系,以低耗高效、经济和工程适用性为目标改进、优化系统装备,同时还需要采取控制孔、构建弱面等方法解决压实区的“瓶颈”效应。
2.3 电磁波增透技术
微波,通常是指一种波长在0.001~1 m,频率为0.3~300 GHz区间内的超高频电磁波,具有短波长、高频率的特点[126]。1945年,美国雷达工程师Spencer发现了微波的热效应,之后各国学者开始对微波热效应开展研究。微波因具有加热速度快、选择性加热、环保无污染等特点而得到广泛关注。21世纪初,我国学者提出了采用微波注热致裂煤体,构建瓦斯通道的构想[127-130]。
微波注热增透机理,如图10所示。当煤体中部分矿物质的固有频率与微波频率达到倍数关系时,矿物分子会出现反复极化,温度急剧升高。煤体则因极化和未极化矿物的温差形成局部应力梯度,从而促进煤体孔隙、裂隙的萌生、发育和扩展。另外,在微波辐射过程中,煤体还会由于宏−围观的结构损伤,出现强度降低,使得应力集中区向煤层深处转移,产生卸压作用,煤层透气性提高[132-133]。
微波作为一种极具发展潜力的煤层增透技术,与传统热应力致裂技术相比,能够实现非接触式加热,具有穿透能力强、加热速度快等特点。同时,微波注热还能够干燥煤体,显著改善煤体结构、减弱或消除水锁效应、具有无污染、适用性广等优势[134]。
林柏泉教授[135]提出的微波注热强化煤层瓦斯抽采的工程应用方案,如图11所示。首先,将连接微波发生器的微波天线置于钻孔的指定位置处;然后,采用封孔器封孔,并利用微波加热煤层。在工程应用中,微波由于波长短,能量衰减较快,使得转化于破煤的能量较少,导致微波增透范围小,效果不显著。增大微波的输入功率能有效提高单位时间内作用于煤体的能量,进而增加煤体局部的热应力,促进煤层的裂隙发育。另外,微波辐射时间越长,传递能量越多,瓦斯解吸率越高,解吸量也越大。然而,高输入功率、长时间辐射,将会导致受限空间的环境温度过高,存在安全隐患[136-137]。此外,由于配套装置,在井下受限空间内有效作业问题仍未解决,故该技术相关的工程应用鲜有报导。
因此,微波增透技术在未来的主要发展方向应是减少微波在传输过程中的能量损失;根据煤体的矿物成分,分类确定与之相对应的微波作用频率;设计研发可适用于实际工程应用的微波增透装置。
3. 气体相关增透技术应用
气体相关增透技术是通过气体直接或间接作用于煤体的方式,促进煤层裂隙发育、扩展,瓦斯解吸、流动,进而提高瓦斯抽采效率。目前,气体相关增透技术主要包括:深孔预裂爆破、高压气体爆破、注气驱替、液态CO2相变致裂和低压(磨料)空气射流。
3.1 深孔预裂爆破增透技术
20世纪美国、加拿大等国家率先开展预裂爆破技术研究。该技术最先应用于岩体破碎,之后在工程领域得到快速发展,被广泛应用于隧道掘进、公路及水电站建设等工程 [138-140]。1956年,前苏联通过向钻孔内装入爆破筒,在卡拉干煤田进行了煤层预裂爆破试验。煤层采用深孔预裂爆破增透后,有效提高了钻孔平均瓦斯流量[141-142]。
我国在20世纪70年代,将该技术用于北票、立新、红卫等煤矿的煤与瓦斯突出防治工作中[143]。历经近40余年的发展,已探明其爆破增透机理[144],结合煤层赋存条件已明晰炸药当量[145]、爆破孔装药耦合系数[146]、埋深距离[147]等重要参数的取值依据及范围。目前深孔预裂爆破技术装置主要有雷管导线、炸药、PVC管等组成,具体结构,如图12所示。
深孔预裂爆破属于化学炸药爆破,主要通过爆炸产生的爆轰冲击波、爆生气体,辅以控制孔的共同作用使煤体产生卸压空穴、裂纹发育及扩展来增大煤层透气性。深孔预裂爆破的增透机理如图13所示。药卷起爆后,产生的爆轰冲击波破碎炮孔周围煤体,形成约爆破孔直径1~3倍的粉碎区空穴,此区域为卸压后瓦斯的流通积聚提供空间。此外,爆炸产生的高温高压气体楔入爆炸波作用下产生的初始径向裂隙中,使裂隙产生新的发育与扩展。在此基础上,利用控制孔的导向作用,进一步引导裂隙沿径向生成大范围贯通裂隙网络[149]。
深孔预裂爆破技术通过导线来引爆置于钻孔中的药卷,工程操作简单,整体设备结构不复杂,作业高效。同时作为化学爆炸做功,能量利用率高达70%[150],远高于水力化技术能量利用率。爆炸后产生的高密度集束能量瞬间释放可高效致裂煤体,尤其是在坚固性系数0.3以上的煤层中,裂隙扩展发育充分,爆破影响半径可达6~12 m[151]。
深孔预裂爆破技术优势明显的同时也存在一些不足。在深孔预裂爆破技术工程应用中,药卷作为核心爆炸装置,本身危险系数极高,同时炮孔受制于炸药当量,无法形成大范围卸压空间。且在实际操作中,哑炮、拒爆现象仍无法完全避免,加之国家政府对炸药管控的日益严格,以炸药爆破的措施应用将愈加受限。此外,在深长钻孔打钻过程中,由于受到钻杆自重、地应力及围岩应力等影响,钻孔将不可避免的发生弯折,且在松软煤层的部分孔段还出现堵塞、塌孔现象。这使得药卷难以被准确安放至钻孔指定深度。
总体而言,深孔预裂爆破技术因其能量利用率高而具备应用推广的潜力。未来该技术在工程应用中应避免哑炮、拒爆等现象;在安全操作的基础上应实现精细化炸药爆破;需针对不同硬度的煤层建立深孔预裂爆破技术的应用体系和参数标准。
3.2 高压气体爆破增透技术
高压气体爆破是一种物理爆破方法,是利用机械设备或通过物质的物理化学变化产生的高压气体在煤体中瞬间释放破碎煤体[152]。该技术有效避免了深孔预裂爆破技术存在的哑炮、拒爆、诱发瓦斯突出等问题[153]。美国AIRDOX公司最早于1938年开始研究高压气体爆破破煤技术[154]。20世纪70年代我国开始研究该技术,并于1992年在平顶山矿务局七矿进行地面爆破筒实验,取得了良好的爆破效果,之后开始逐渐推广[155]。经过近40余年的研究发展,高压气体爆破技术相关理论与装备不断完善,沈阳煤科院现已形成矿用高压空气爆破成套技术及设备[156-157],所研发设备主要由加压泵站、储气装置、输送管路系统、控制系统和释放装置组成,其设备如图14所示。
高压气体爆破的增透机理,如图15所示。高压气体爆破技术主要以空气和二氧化碳作为工作介质,介质通过压缩装置沿高压软管进入爆破筒内,通过爆破筒对工作介质进行加压或诱发相变,当气体压力达到设定的临界压力时打开爆破阀,气体将会被瞬间释放,所产生的高压空气冲击波在近炮孔内粉碎煤体,形成一定体积的空穴,为瓦斯的卸压抽采提供富集区域,之后冲击波随能量衰减,开始生成沿着钻孔径向及环向的初始裂隙;同时高压气体楔入裂隙,并通过气体的尖劈、压裂作用继续扩展裂隙,使爆破孔周围形成交叉贯通的裂隙网络,最终促使煤体破碎,提高煤层透气性[156,159-160]。
高压气体爆破技术优势明显,可调节爆破筒装置设计参数来压缩工作介质。高压气体爆破技术由于能量可控,使得设备及工程操作人员的安全性得到保障。此外,以空气为主的工作介质价廉易捕集,且对环境友好,无污染[161]。目前,高压气体爆破技术在边坡治理、开挖等工程中得到了较广泛的应用[162]。
高压气体爆破技术在低渗煤层增透中鲜有报导。主要原因是煤层中钻杆轨迹易弯折,钻孔易塌孔、堵孔,使得在钻孔深部精准放置爆破筒变得困难。这一现象在松软煤层中更为突出。同时,因受限于钻孔作业空间体积与爆破筒材质,存在升压上限,高压气体爆破煤体时单位气体产生的爆破能量密度较低,致使破碎煤体能力较弱[163],卸压范围小。增大爆破压力是解决上述问题最直接的办法,但在受限空间内提高压力将对爆破筒材料提出更高的要求。此外,高压气体工作时无法连续供给也是遏制该技术推广的重要因素[156]。且对于巨厚煤层爆炸后煤体堵塞钻孔,不利于筛管的安放。
因此,高压气体爆破技术的未来发展方向是寻求气体加压新方法,形成稳定、持续的高压气体来源;解决装置在松软煤层深孔位置准确安放和精细化爆炸控制的难题。
3.3 注气驱替/置换增透技术
煤层注气驱替/置换瓦斯技术起源于减少温室气体CO2排放的碳封存技术[164-165]。1995年美国在圣胡安盆地首次进行了CO2注入煤层驱替瓦斯试验研究[166]。21世纪初,加拿大、日本等国进行注入混合气体驱替煤层气(CH4)的试验研究[167-169],均取得了良好的试验效果。我国于2004年在山西沁水盆地首次进行注二氧化碳(CO2)驱替煤层气的试验研究[170]。而后随着技术的不断发展,逐渐应用于煤层增透领域。
注气驱替实验系统,如图16所示。注气驱替是通过置换、驱替煤基质表面吸附态瓦斯转变为游离态,最终提高瓦斯抽采效率[172-174]。我国注气驱替瓦斯增透技术主要使用气体介质为CO2、N2以及含CO2或N2的混合气体。
目前,学界关于煤层注气驱替/置换瓦斯作用机理尚未完全达成共识,主要理论包括“置换”作用机理(图17a)、“分压”作用机理(图17b)、“稀释”作用机理(图17c)和“增流/透”作用机理(图17d)。由于注气过程较为复杂,既有渗流、扩散等多种运动形式,也存在置换、驱替等多种效应,还包含吸附、解吸等多种微观行为[176-178],现有理论哪一种起主导作用尚未定论。这不仅与注入气体的性质有关,还受到煤层发育状况的影响。此外,注气过程引起的多物理场性质及气体赋存状态变化尚未充分研究。因此,仍需进一步完善注气驱替/置换理论,寻求高效增透方法。
相较于爆破类增透技术,工程注气压力一般不大于0.74 MPa[179],在安全性上优于前者。同时注气驱替技术是一种纯物理方法,当注气工作介质为CO2时可从地质上实现CO2封存,降低全球温室效应。注气技术以其环保性、经济性,且能有效提高井下瓦斯抽采率而被广泛关注。但技术自身也存在一些不足。注气驱替技术因其注气压力小,无法像爆破类技术高效破碎煤体,增透作用范围小。欲高效置换、驱替煤层瓦斯,该技术对煤层地质条件发育状况要求较高,需透气性强,裂纹、裂隙贯通性良好的煤层工况条件,这极大限制了技术的适用性推广。在实际工程应用中,以CO2作为驱替瓦斯介质时,随着气体持续注入,煤层中CO2浓度不断升高,会存在CO2突出的危险性。此外,高压罐装气体作为气体来源,气体的连续性供给无法有效保证。且在井下实践应用中单一注气驱替技术增透的应用效果不明显,多种气体共同驱替作用时,体积参数分配上尚未由理论指导。
因此,注气驱替/置换技术未来发展的方向是解决注气气体连续供给问题;寻求CO2与N2混合气体的合适比例,充分发挥不同气体在驱替瓦斯过程中的优势;多种注气技术相结合,协同增透煤层;探寻技术适用性的煤层,结合不同煤层地质及工况,与其它技术进行合理性适配,以期解决复杂地质瓦斯抽采难题,使得技术系统化、标准化、参数化。
3.4 液态CO2相变致裂增透技术
液态CO2相变致裂与高压气体爆破技术相似,也属于非炸药爆破,最先由美国煤矿工程师Hosea V. Ferrell于1914年发明而来[180-181]。20世纪60年代,美国率先采用高压CO2气体爆破进行煤岩致裂作业[182]。
液态CO2相变致裂技术于90年代后期引入我国,鉴于其具有安全、无污染且爆破强度可控等优势,被应用在边坡治理、煤层致裂等领域[183-184]。CO2相变致裂技术是以超临界态CO2与气态CO2之间的能量差作为动力[185]。常用的液态CO2相变致裂装置,如图18所示,主要包括射流阀、加热管、压裂管、爆破片等。
液态CO2相变致裂增透机理,如图19所示。在发爆器加热后,液态CO2吸热快速气化膨胀,并产生气爆应力波。在应力波作用下钻孔煤体发生破坏变形,并于周围形成数倍于钻孔直径的新生裂隙;在应力波作用后,膨胀的CO2气体产生准静态应力场,楔入张开的裂隙中,促使裂纹继续扩展,并在致裂钻孔周围形成径向交叉的裂隙网络,从而实现增大煤层透气性的目的[188-189]。
CO2相变致裂技术属于纯物理爆破方法。爆破时不会产生任何火花或明火,且液态CO2吸热膨胀后降低了钻孔周围工作面的环境温度,一定程度上改变了煤体力学性能,使其更易破碎;同时产生的大量惰性CO2从本质上杜绝了瓦斯爆炸的可能性。因此,对于CO2相变技术在井下的安全性具有极大保障[190]。此外,作为压缩CO2气体发生相变,其能量可控。作业后的CO2气体置换瓦斯后被封存于地下,有效降低了温室效应[191]。
相比于高压气体爆破技术,虽然液态CO2相变致裂技术具有破煤岩门限压力低,增透效率高且可避免储层伤害等技术优势,但目前液态二氧化碳相变致裂技术在工程上仍未得到广泛推广。主要原因是CO2的捕集与运输成本高,相比水力化等卸压增透技术,工程成本高且卸压增透范围较小。但液态二氧化碳的高渗透性、置换驱替等诸多优势仍使其能够在煤层增透领域占有一席之地。在攻克CO2捕集及运输的基础上,才能够充分发挥其多种优势的卸压增透效果。此外,对于CO2的适用量应结合地质条件,谨防CO2突出的潜在威胁,做到精细化控制管理。
3.5 低压(磨料)空气射流技术
1991年,荷兰的飞利浦研究实验室将改进后的微磨料气体喷射处理技术用于平板超薄阴极射线管显示器玻璃面板的钻孔过程中。从此微磨料气体喷射加工技术在硬和脆性材料的微精密制造领域开始活跃起来[192-194]。因技术低耗高效、结构简单等优点而逐渐在其它领域得到应用。2013年,笔者团队率先将磨料空气射流技术应用于煤层瓦斯卸压增透领域。此技术使用空压机压缩后的空气介质作为动力源,空气通过优化设计的拉瓦尔喷嘴结构后被加速至超音速,磨料粒子在超音速空气流场中被充分加速,获得较高的冲击动能[195-196]。在磨料空气射流冲击磨蚀与冲击应力波的协同作用下破碎煤体,形成煤层割缝,从而实现煤层瓦斯卸压增透的目的。
空气射流能否实现超音速喷射是磨料粒子获得高动能的前提,更是煤体被高效破碎割缝实现瓦斯卸压增透的重要基础。喷嘴内部结构的设计是影响空气射流加速的重要因素,传统的喷嘴结构主要分为两类,一类是适用于水射流及喷涂技术的圆锥收敛型喷嘴结构,另一类是空化水射流及超音速飞机发动机喷管的缩放型喷嘴结构[197]。上述喷嘴结构主要被应用于水介质工况及特种作业中,对于以空气为工作介质的磨料空气射流技术中,不能有效控制速度流场结构及喷射速度,这将严重遏制割缝效率。笔者团队基于空气动力学理论基础,设计了拉法尔喷嘴(缩放型)结构,对新型的Laval喷嘴结构[198-199],采用统一膨胀比的方式对其结构参数包括出入口半径、喉部直径、收缩段、扩展段长度,进行相关的数值模拟及理论分析,确定了各参数关系,构建了拉瓦尔喷嘴结构计算模型。提出在Laval膨胀比为1.12[200]时,射流速度流场最稳定,射流具有较长的等速核,射流加速效果最佳,速度可高达900 m/s[201-202]。基于设计的拉瓦尔喷嘴结构,能够在射流压力为25MPa条件下,实现对花岗岩、灰岩、砂岩的高效破碎[200]。团队自主研发的高压/低压磨料空气射流冲孔、割缝系统及相应的测试装置,如图20所示。
在煤矿井下施工中,为连续维持25 MPa的空气压力,需额外配给空压泵。过高的工作压力、额外设备限制了技术的推广应用。为进一步降低技术所需工作压力,提高技术的工程适用性。笔者团队在原有Laval喷嘴的基础上进行优化设计,成功实现了在低压条件下(< 1 MPa)空气通过Laval喷嘴喷射,形成高超声速(> 900 m/s)气体射流,加速磨料粒子至超声速[203-204]。在此基础上,通过开展低压磨料空气射流实验,发现当射流压力为1 MPa时,磨料空气射流能够高效破碎花岗岩、玄武岩等坚硬岩石。磨料空气射流在低压力条件下切割花岗岩的效果,如图21所示,图中H为破岩深度。
低压磨料空气射流的破煤岩能耗仅为水射流的1/40,有效降低了射流割缝所需能耗,极大提高了技术的工程适用性。此外,为进一步探究影响粒子动能的因素,完善磨料空气射流割缝破煤岩机理,团队展开了粒子加速机理的相关研究。分析了磨料气体射流加速规律,发现射流粒子的加速区域主要在喷嘴收敛段以及扩张段[197,200];同时分析了磨料密度、磨料粒径、磨料形状及磨料质量流量对粒子加速的影响[205-206]。研究发现,磨料质量流量与磨料硬度对破煤效果的影响更为显著。比起提高压力,通过控制磨料质量流量能够更有效的提高破煤岩效果。合适的质量流量及粒径大小不仅使磨料得到充分的加速,还可以减弱“砂垫效应”,能够实现能量转化效率的最大化[207-208]。不同磨料质量流量冲蚀效果如图22所示。
目前,笔者团队已在义煤集团的新义煤矿进行了低压(磨料)空气射流的冲孔、割缝试验。在松软煤层中,采用低压空气射流进行冲孔,不仅未出现堵孔、喷孔等现象,还能在较短时间内获得均匀较大的出煤量。现场试验,如图22所示,得出当射流压力接近1 MPa(≤1 MPa),冲孔时间约为5 h(水力冲孔时间约为12 h)时,出煤量能够达到3.2 吨,转化为冲孔半径为1.1 m。充分验证了在松软煤层中采用低压(磨料)空气射流进行卸压增透的可行性。除在松软低渗煤层适用外,根据煤层赋存条件,坚固性系数f的大小,考虑在空气射流中添加磨料,可有效破碎坚硬煤岩,实现扩孔卸压增透。
笔者团队经过十多年的攻关,已建立了低压磨料空气射流流场调控、破碎煤岩的相关理论及技术体系,为在松软煤层瓦斯治理领域的应用打下了坚实的基础。在未来,团队将进一步结合松软煤层的实际工况来优化低压磨料空气射流的工艺参数,同时提高气力化设备的便捷性、安全性,从而助力技术的工业化推广应用。
4. 无水化增透技术发展趋势
目前,地面井抽采、定向长钻孔和水力化增透等瓦斯抽采技术已基本能够实现瓦斯灾害防治的目的,满足瓦斯治理的需求。但随着我国能源战略和深地战略的逐步实施,我国瓦斯治理已经由“管得住”转变为“治得快、治得好”的新局面。即要求进一步提高瓦斯抽采效率,缩短预抽时间。促使瓦斯由阻碍煤矿生产的第一要素转变为高效清洁能源,真正实现煤与瓦斯共采的目标。
水力化增透技术在瓦斯治理和抽采中发挥了重要作用,甚至在未来长一段时间内仍然是瓦斯抽采的主要技术。但随着瓦斯抽采需要和理念变化,在新的瓦斯治理历史阶段,“降本增效”是瓦斯治理和抽采的发展趋势。突破水力化增透基本思路,发展无水化增透技术是实现松软煤层瓦斯高效抽采的必由之路。
近年来,无水化增透技术作为瓦斯抽采重要方法得到了充分的发展。但从工程推广应用角度,均没有达到水力化增透技术的成熟度。其本质原因是无水化增透技术适用性、经济性和可靠性并没有达到工程推广应用的要求。如机械刀具扩孔技术在硬煤层中应用效果较好,但在松软煤层中应用时仍存在诸多问题。电磁波、机械波等增透技术,需要在抽采全程施加持续的扰动维持抽采瓦斯高浓度、高流量,导致能耗较高。抽采钻孔恶劣、受限环境对复杂、精密的电磁波、机械波技术装备提出了更高的可靠性要求。
在当前的瓦斯治理形势下,无水化增透技术装备简易化、易操作和低能耗是必然的发展方向。此外,结合我国复杂的煤层赋存地质,充分发挥各个技术的优势,是解决我国瓦斯抽采难题,释放煤炭产量的关键。对于松软低渗煤层,增加其透气性的基础上保障卸压钻孔的稳定性;难解析煤层,提高瓦斯解析效率,如置换驱替技术就有较好的适用前景;难卸压煤层,采取机械刀具导向钻进扩孔,再采用磨料空气射流技术扩大钻孔。未来,随着煤炭储层地质的加深、面临问题的复杂加剧,应充分结合技术之间的优势,多种举措并行,以期提高瓦斯抽采效率,充分提高煤炭产能。目前,无水化技术中,以低耗高效、装备成熟度高与技术适用性广为评价参考,其中磨料空气射流在众多技术中脱颖而出,磨料空气射流可在1 MPa压力条件下高效破碎花岗岩、玄武岩等坚硬岩石,在松软煤层中的扩孔半径可超过1 m。较高的破碎煤岩能力使磨料空气射流具备低能耗的特征(能耗仅为水射流的1/40)。磨料空气射流技术与水力化增透技术相似,均具有装备简单、操作方便的特点。相比于其它无水化增透技术,磨料空气射流技术具有较高的应用潜力。但若要满足瓦斯抽采新形势的需求,磨料空气射流技术需要在以下几个方面进行深入研究:
1)根据煤层赋存特征,进一步优化技术适用性。在煤层硬度较低(f < 0.2)、构造较为发育的煤层,采用技术装备和工艺更为简单的空气射流卸压增透技术。在中硬煤层(0.2 < f < 0.5)采用低压磨料空气射流扩孔技术,使得钻孔全段半径增大到300 mm以上。在坚硬煤层(f > 0.5),采用低压磨料空气射流割缝,构建均匀卸压网络,实现煤层增透。
2)构建稳定卸压空间。在松软煤层,磨料空气射流无水化卸压能够最大程度的保持煤体力学强度和卸压空间稳定性。但在地应力作用下,卸压空间仍会蠕变、垮塌。构建合理的卸压空间几何形态,保障瓦斯抽采周期内空间稳定性。
3)构建长期畅通的裂缝网络。为实现全煤层整体卸压,需要合理布局钻孔间距和卸压空间的位置关系,实现全煤层有效卸压并构建裂隙缝网,同时保障裂缝在瓦斯抽采周期内的有效畅通。
4)技术装备的安全性。磨料空气射流卸压增透过程中煤尘和瓦斯的逸散,会严重威胁作业人员职业安全健康,并可能导致瓦斯超限。研发配套的孔口防喷和煤渣收集、分离装置是保障安全施工的重要前提。
5. 总结与展望
无水化技术的共同特点是动力由“无水化”方法提供。依据卸压增透的动力可归纳为:机械类增透技术、电磁波/机械波增透技术及气体相关增透技术。无水化技术从源头上解决了松软煤层增透时,因水侵入导致的煤体软化、泥化及水锁效应等。相较于水力化技术,无水化技术能实现松软煤层瓦斯运移通道的长时间通畅,具备高效抽采瓦斯能力。
无水化技术在理论与试验方面均已取得了重大进展,但因技术的成熟度不足,尚未在实际工程中得到应用或推广。未来应着力于提高无水化相关设备的技术成熟度、可操作性、经济性和安全性。以新质生产力的发展理念为指导,基于成熟的无水化装备,突破松软煤层瓦斯高效抽采技术瓶颈,实现煤层瓦斯的低能耗、高效率治理。
低压磨料空气射流技术因其能耗低、安全性高和卸压范围大,在松软煤层增透中逐渐崭露头角。该技术与水力化技术相似,具有设备简单、操作灵活等特点。低压磨料空气射流是采用高速空气或高速磨料冲击破煤的方式进行煤层卸压增透。无水的参与使卸压孔洞具备保持长期稳定的可行性。因此,低压磨料空气射流技术在煤层瓦斯治理领域具有应用推广的潜力。
未来,面对的煤层赋存条件的愈加恶劣,地质环境的复杂多变,应充分发挥无水化技术多样性,优势全面性的特点,多种举措并行,以解决更为复杂的瓦斯抽采难题。
-
-
[1] 国家统计局. 中华人民共和国2022年国民经济和社会发展统计公报[N]. 人民日报,2023−03−01(9). National Bureau of Statistics. Statistical communiqué on national economic and social development of people’s republic of China (PRC) in 2022[J]. People's Daily, 2023−03−01(9).
[2] 王国法,任世华,庞义辉,等. 煤炭工业“十三五” 发展成效与“双碳” 目标实施路径[J]. 煤炭科学技术,2021,49(9):1−8. WANG Guofa, REN Shihua, PANG Yihui, et al. Development achievements of China’s coal industry during the 13th Five-Year Plan period and implementation path of “dual carbon” target[J]. Coal Science and Technology,2021,49(9):1−8.
[3] 刘峰,郭林峰,赵路正. 双碳背景下煤炭安全区间与绿色低碳技术路径[J]. 煤炭学报,2022,47(1):1−15. LIU Feng, GUO Linfeng, ZHAO Luzheng. Research on coal safety range and green low-carbon technology path under the dual-carbon background[J]. Journal of China Coal Society,2022,47(1):1−15
[4] 数说煤炭2023[N]. 中国煤炭报,2024−04−04(004). Say coal 2023[N]. China Coal News, 2024−04−04(004).
[5] 杨沐岩. 煤炭供应总量再创新高开发布局持续优化[N]. 中国能源报,2024−04−01(003). [6] 王敏. 袁亮代表:促进大型煤炭矿区产能接续[N]. 中国科学报,2024−03−07(004). [7] 潘俊锋,夏永学,王书文,等. 我国深部冲击地压防控工程技术难题及发展方向[J]. 煤炭学报,2024,49(3):1291−1302. PAN Junfeng, XIA Yongxue, WANG Shuwen, et al. Technical difficulties and emerging development directions of deep rock burst prevention in China[J]. Journal of China Coal Society,2024,49(3):1291−1302.
[8] LIU Weijian, HOU Mengjie, DONG Sensen, et al. Rock burst prevention and control of multifield coupling in longwall working face[J]. Applied Geophysics,2024,21(1):119−132. doi: 10.1007/s11770-023-1013-3
[9] 刘洪涛,陈子晗,韩洲,等. 动载扰动诱发巷道冲击的风险性研究[J]. 煤炭学报,2024,49(4):1771−1785. LIU Hongtao, CHEN Zihan, HAN Zhou, et al. Analysis of dynamic loading events and the riskiness of roadway rockburst[J]. Journal of China Coal Society,2024,49(4):1771−1785.
[10] 郭佳奇,毋文涛,颜天佑,等. 爆破开挖扰动下深埋隧洞围岩含水裂隙起裂机制研究[J]. 岩石力学与工程学报,2024,43(Z2):3597−3608. GUOJIA Qi, WU Wentao, YAN Tianyou, et al. Study on initiation mechanism of water-bearing cracks in surrounding rock of deep-buried tunnel under disturbance of blasting excavation[J]. China Industrial Economics,2024,43(Z2):3597−3608.
[11] 王皓,孙钧青,曾一凡,等. 蒙陕接壤区煤层顶板涌水水源智能判别方法[J]. 煤田地质与勘探,2024,52(4):76−88. doi: 10.12363/issn.1001-1986.24.01.0083 WANG Hao, SUN Junqing, ZENG Yifan, et al. An intelligent water source discrimination method for water inrushes from coal seam roofs in the Inner Mongolia-Shaanxi border region[J]. Coal Geology & Exploration,2024,52(4):76−88. doi: 10.12363/issn.1001-1986.24.01.0083
[12] 曾一凡,朱慧聪,武强,等. 我国煤层顶板水害研究现状与防控路径[J/OL]. 煤炭学报,1−18. https://doi.org/10.13225/j.cnki.jccs.2024.0039. ZENG Yifan, ZHU Huicong, WU Qiang, et al. Research status and prevention and control path of coal seam roof water disaster in China[J]. Journal of China Coal Society, 2024(3):1−18. https://doi.org/10.13225/j.cnki.jccs.2024.0039.
[13] 崔晓娜,陈林. 幔源岩浆在地壳中分层侵位的控制因素:二维热−力学模拟[J]. 岩石学报,2024,40(4):1087−1101. doi: 10.18654/1000-0569/2024.04.04 CUI Xiaona, CHEN Lin. Factors controlling the stratified emplacement of mantle-derived magma within the crust:2-D thermomechanical modelling[J]. Acta Petrologica Sinica,2024,40(4):1087−1101. doi: 10.18654/1000-0569/2024.04.04
[14] 张克松,王朱亭,姚波,等. 安徽省阜阳盆地及周边大地热流分布特征[J]. 地质科学,2024,59(2):375−387. doi: 10.12017/dzkx.2024.027 ZHANG Kesong, WANG Zhuting, YAO Bo, et al. Characteristics of heat flow distribution in Fuyang Basin and its surrounding area, Anhui Province[J]. Chinese Journal of Geology,2024,59(2):375−387. doi: 10.12017/dzkx.2024.027
[15] 刘业娇,袁亮,薛俊华,等. 2007—2016年全国煤矿瓦斯灾害事故发生规律分析[J]. 矿业安全与环保,2018,45(3):124−128. doi: 10.3969/j.issn.1008-4495.2018.03.028 LIU Yejiao, YUAN Liang, XUE Junhua, et al. Analysis on the occurrence law of gas disaster accidents in coal mine from 2007 to 2016[J]. Mining Safety & Environmental Protection,2018,45(3):124−128. doi: 10.3969/j.issn.1008-4495.2018.03.028
[16] 王恩元,张国锐,张超林,等. 我国煤与瓦斯突出防治理论技术研究进展与展望[J]. 煤炭学报,2022,47(1):297−322. WANG Enyuan, ZHANG Guorui, ZHANG Chaolin, et al. Research progress and prospect on theory and technology for coal and gas outburst control and protection in China[J]. Journal of China Coal Society,2022,47(1):297−322.
[17] 秦波涛,马东. 采空区煤自燃与瓦斯复合灾害防控研究进展及挑战[J/OL]. 煤炭学报,2024:1−18. (2024−04−08). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=MTXB20240402001&dbname=CJFD&dbcode=CJFQ. QIN Botao, MA Dong. Research progress and challenges of prevention and control of combined disasters of coal spontaneous combustion and gas in goaf[J/OL]. China Industrial Economics, 2024:1−18. (2024−04−08). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=MTXB20240402001&dbname=CJFD&dbcode=CJFQ.
[18] 田富超,贾东旭,陈明义,等. 采空区复合灾害环境下含瓦斯煤自燃特征研究进展[J]. 煤炭学报,2024,49(6):2711−2727. TIAN Fuchao, JIA Dongxu, CHEN Mingyi, et al. Research process of spontaneous combustion of coal containing gas under the compound disaster environment in the goaf[J]. Journal of China Coal Society,2024,49(6):2711−2727.
[19] 翟成,丛钰洲,陈爱坤,等. 中国煤矿瓦斯突出灾害治理的若干思考及展望[J]. 中国矿业大学学报,2023,52(6):1146−1161. ZHAI Cheng, CONG Yuzhou, CHEN Aikun, et al. Reflection and prospect on the prevention of gas outburst disasters in China’s coal mines[J]. Journal of China University of Mining & Technology,2023,52(6):1146−1161.
[20] 中华人民共和国应急管理部. 煤矿瓦斯爆炸原因分析及防治办法[R/OL]. 新闻宣传司,(2019−4−1). https://www.mem.gov.cn/kp/sgzn/201904/t20190401_366204.shtml. [21] 谢和平. “深部岩体力学与开采理论” 研究构想与预期成果展望[J]. 工程科学与技术,2017,49(2):1−16. XIE Heping. Research framework and anticipated results of deep rock mechanics and mining theory[J]. Advanced Engineering Sciences,2017,49(2):1−16.
[22] 李伟. 深部煤炭资源智能化开采技术现状与发展方向[J]. 煤炭科学技术,2021,49(1):139−145. LI Wei. Current status and development direction of intelligent mining technology for deep coal resources[J]. Coal Science and Technology,2021,49(1):139−145.
[23] 陈本良,袁亮,薛生,等. 淮南矿区煤层顶板分段压裂水平井抽采技术及效果研究[J]. 煤炭科学技术,2024,52(4):155−163. doi: 10.12438/cst.2023-1937 CHEN Benliang, YUAN Liang, XUE Sheng, et al. Study on technology and effect of gas extraction in horizontal well with staged hydraulic fracture in coal seam roof in Huanan mining area[J]. Coal Science and Technology,2024,52(4):155−163. doi: 10.12438/cst.2023-1937
[24] 高魁,王有为,乔国栋,等. 构造煤层顶板爆破跨界面致裂增透机制研究及应用[J]. 煤田地质与勘探,2024,52(4):35−46. doi: 10.12363/issn.1001-1986.23.07.0447 GAO Kui, WANG Youwei, QIAO Guodong, et al. Mechanism and application of cross interface cracking for permeability enhancement in tectonic coal roof blasting[J]. Coal Geology & Exploration,2024,52(4):35−46. doi: 10.12363/issn.1001-1986.23.07.0447
[25] 柴敬,兰浩,马晨阳,等. 保护层开采下伏煤岩应力释放与卸压程度识别[J]. 煤炭学报,2025,49(S2):553−564. CHAI Jing, LAN Hao, MA Chenyang, et al. Identification of the degree of stress release and unloading in the underlying coal rock of protected seam mining[J]. Journal of China Coal Society,2025,49(S2):553−564.
[26] 王坤,孟祥瑞,程详,等. 软岩保护层开采采动卸压效果的预测及应用[J]. 中国安全生产科学技术,2023,19(10):66−73. WANG Kun, MENG Xiangrui, CHENG Xiang, et al. Prediction and application of mining pressure relief effect in soft rock protective layer mining[J]. Journal of Safety Science and Technology,2023,19(10):66−73.
[27] 焦先军,童校长,李明强. 开采保护层与预抽煤层瓦斯防突效果分析[J]. 煤炭技术,2024,43(2):118−120. JIAO Xianjun, TONG Xiaozhang, LI Mingqiang. Analysis on Effect of Gas Outburst Prevention in Exploitation Protective Coal Seam and Pre-extraction Coal Seam Gas[J]. Coal Technology,2024,43(2):118−120.
[28] 卢义玉,黄杉,葛兆龙,等. 我国煤矿水射流卸压增透技术进展与战略思考[J]. 煤炭学报,2022,47(9):3189−3211. LU Yiyu, HUANG Shan, GE Zhaolong, et al. Research progress and strategic thinking of coal mine water jet technology to enhance coal permeability in China[J]. Journal of China Coal Society,2022,47(9):3189−3211.
[29] 刘忠全,陈殿赋,孙炳兴,等. 高瓦斯矿井超大区域瓦斯治理技术[J]. 煤炭科学技术,2021,49(5):120−126. LIU Zhongquan, CHEN Dianfu, SUN Bingxing, et al. Gas control technology in super large area of high gassy mine[J]. Coal Science and Technology,2021,49(5):120−126.
[30] 琚宜文,李清光,谭锋奇. 煤矿瓦斯防治与利用及碳排放关键问题研究[J]. 煤炭科学技术,2014,42(6):8−14. JU Yiwen, LI Qingguang, TAN Fengqi. Research on key issues of mine gas prevention and control and utilization as well as carbon emission[J]. Coal Science and Technology,2014,42(6):8−14
[31] 申宝宏,刘见中,雷毅. 我国煤矿区煤层气开发利用技术现状及展望[J]. 煤炭科学技术,2015,43(2):1−4. SHEN Baohong, LIU Jianzhong, LEI Yi. Present status and prospects of coalbed methane development and utilization technology of coal mine area in China[J]. Coal Science and Technology,2015,43(2):1−4.
[32] 赵鹏翔,常泽晨,李树刚,等. 厚煤层采空区定向孔分域抽采研究及应用[J]. 中国安全科学学报,2023,33(1):70−79. ZHAO Pengxiang, CHANG Zechen, LI Shugang, et al. Research and application of directional drilling sub area extraction in thick coal seam goaf[J]. China Safety Science Journal,2023,33(1):70−79
[33] 王晨阳,李树刚,张永涛,等. 煤矿井下硬煤层顺层长钻孔分段压裂强化瓦斯抽采技术及应用[J]. 煤田地质与勘探,2022,50(8):72−81. WANG Chenyang, LI Shugang, ZHANG Yongtao, et al. Enhanced gas drainage technology by staged fracturing in long bedding borehole in hard coal bed of underground coal mine and its application[J]. Coal Geology & Exploration,2022,50(8):72−81.
[34] 王恩元,汪皓,刘晓斐,等. 水力冲孔孔洞周围煤体地应力和瓦斯时空演化规律[J]. 煤炭科学技术,2020,48(1):39−45. WANG Enyuan, WANG Hao, LIU Xiaofei, et al. Spatio temporal evolution of geostress and gas field around hydraulic punching borehole in coal seam[J]. Coal Science and Technology,2020,48(1):39−45.
[35] 程小庆,王兆丰. 水力冲孔卸煤量对增透效果的影响[J]. 煤矿安全,2018,49(4):148−151. CHENG Xiaoqing, WANG Zhaofeng. Influence of hydraulic punching coal unloading amount on permeability improvement[J]. Safety in Coal Mines,2018,49(4):148−151.
[36] 王凯,李波,魏建平,等. 水力冲孔钻孔周围煤层透气性变化规律[J]. 采矿与安全工程学报,2013,30(5):778−784. WANG Kai, LI Bo, WEI Jianping, et al. Change regulation of coal seam permeability around hydraulic flushing borehole[J]. Journal of Mining & Safety Engineering,2013,30(5):778−784.
[37] 薛斐. 水力冲孔煤层增透机理及应用研究[D]. 北京:中国矿业大学,2019. XUE Fei. Study on pressure relief mechanism of hydraulic flushing in coal seams and its application[D]. Beijing:China University of Mining & Technology, Beijing, 2019.
[38] 袁亮,林柏泉,杨威. 我国煤矿水力化技术瓦斯治理研究进展及发展方向[J]. 煤炭科学技术,2015,43(1):45−49. YUAN Liang, LIN Baiquan, YANG Wei. Research progress and development direction of gas control with mine hydraulic technology in China coal mine[J]. Coal Science and Technology,2015,43(1):45−49.
[39] 孙炳兴,王兆丰,伍厚荣. 水力压裂增透技术在瓦斯抽采中的应用[J]. 煤炭科学技术,2010,38(11):78−80,119. SUN Bingxing, WANG Zhaofeng, WU Hourong. Hydraulic pressurized cracking and permeability improvement technology applied to gas drainage[J]. Coal Science and Technology,2010,38(11):78−80,119.
[40] 吕有厂. 水力压裂技术在高瓦斯低透气性矿井中的应用[J]. 重庆大学学报,2010,33(7):102−107. doi: 10.11835/j.issn.1000-582X.2010.07.019 LYU Youchang. Application the hydraulic fracturing technology in the high pressure and low permeability mine[J]. Journal of Chongqing University,2010,33(7):102−107. doi: 10.11835/j.issn.1000-582X.2010.07.019
[41] 冯彦军,康红普. 水力压裂起裂与扩展分析[J]. 岩石力学与工程学报,2013,32(S2):3169−3179. FENG Yanjun, KANG Hongpu. Hydraulic fracturing initiation and propagation[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(S2):3169−3179.
[42] 李栋,卢义玉,荣耀,等. 基于定向水力压裂增透的大断面瓦斯隧道快速揭煤技术[J]. 岩土力学,2019,40(1):363−369,378. LI Dong, LU Yiyu, RONG Yao, et al. Rapid uncovering seam technologies for large cross-section gas tunnel excavated through coal seams using directional hydraulic fracturing[J]. Rock and Soil Mechanics,2019,40(1):363−369,378.
[43] 沈华建. 煤层割缝喷嘴结构优化与试验[J]. 煤矿安全,2020,51(4):10−13. SHEN Huajian. Structural Optimization and Test of Nozzle for Coal Seam Slotting[J]. Safety in Coal Mines,2020,51(4):10−13.
[44] 卢义玉,贾亚杰,葛兆龙,等. 割缝后煤层瓦斯的流−固耦合模型及应用[J]. 中国矿业大学学报,2014,43(1):23−29. LU Yiyu, JIA Yajie, GE Zhaolong, et al. Coupled fluid-solid model of coal bed methane and its application after slotting by high-pressure water jet[J]. Journal of China University of Mining & Technology,2014,43(1):23−29.
[45] 闫发志,朱传杰,郭畅,等. 割缝与压裂协同增透技术参数数值模拟与试验[J]. 煤炭学报,2015,40(4):823−829. YAN Fazhi, ZHU Chuanjie, GUO Chang, et al. Numerical simulation parameters and test of cutting and fracturing collaboration permeability-increasing technology[J]. Journal of China Coal Society,2015,40(4):823−829.
[46] 王婕,林柏泉,茹阿鹏. 割缝排放低透气性煤层瓦斯过程的数值试验[J]. 煤矿安全,2005,36(8):4−7. doi: 10.3969/j.issn.1003-496X.2005.08.002 WANG Jie, LIN BaiQuan, RU ePeng. Numerical test of gas drainage in low air permeability coal seam by rifting slots[J]. Safety in Coal Mines,2005,36(8):4−7. doi: 10.3969/j.issn.1003-496X.2005.08.002
[47] 张帅. 松软低渗突出煤层水力冲孔卸压增透研究[J]. 煤矿安全,2024(3):55. ZHANG Shuai. Research of pressure relief and permeability improvement of hydraulic punching in soft and low permeability outburst coal seam[J]. Safety in Coal Mines,2024(3):55.
[48] 张福旺,秦汝祥,杨应迪. 密集水力冲孔增透抽采瓦斯试验研究[J]. 煤炭科学技术,2022,50(4):142−148. ZHANG Fuwang, QIN Ruxiang, YANG Yingdi. Experimental study on gas extraction with intensive hydraulic punching and penetration enhancement[J]. Coal Science and Technology,2022,50(4):142−148.
[49] 唐巨鹏,李成全,潘一山. 水力割缝开采低渗透煤层气应力场数值模拟[J]. 天然气工业,2004,24(10):93−95. doi: 10.3321/j.issn:1000-0976.2004.10.030 TANG Jupeng, LI Chengquan, PAN Yishan. Numeral simulation of stress field for low permeable coal bed gas recovering with hydraulic cutting[J]. Natural Gas Industry,2004,24(10):93−95. doi: 10.3321/j.issn:1000-0976.2004.10.030
[50] 庞涛,姜在炳,惠江涛,等. 煤系水平井定向射孔压裂裂缝扩展机制[J]. 煤田地质与勘探,2024,52(4):68−75. doi: 10.12363/issn.1001-1986.23.08.0496 PANG Tao, JIANG Zaibing, HUI Jiangtao et al. Fracture Extension in Coal Seam with Horizontal Wells and Directional Perforation[J]. Coal Geology & Exploration,2024,52(4):68−75. doi: 10.12363/issn.1001-1986.23.08.0496
[51] 华军,韩桂奇. 超高压水射流割缝+注氮驱替技术应用研究[J]. 煤炭科学技术,2024,52(S2):71−78. HUA Jun, HAN Guiqi. Research on application of ultra-high pressure water jet slotting+ nitrogen injection displacement technology[J]. Coal Science and Technology, 2025, 52(S2):71−78.
[52] 张永将,黄振飞,李成成. 高压水射流环切割缝自卸压机制与应用[J]. 煤炭学报,2018,43(11):3016−3022. ZHANG Yongjiang, HUANG Zhenfei, LI Chengcheng. Investigation and application of high pressure water jet annularity slotting self pressure release mechanism[J]. Journal of China Coal Society,2018,43(11):3016−3022.
[53] 唐永志,李平,朱贵旺,等. 超高压水力割缝技术在中等硬度低透气性煤层的应用[J]. 煤炭科学技术,2022,50(12):43−49. TANG Yongzhi, LI Ping, ZHU Guiwang, et al. Application of ultra-high pressure hydraulic slotting technology in medium hardness and low permeability coal seam[J]. Coal Science and Technology,2022,50(12):43−49.
[54] 黄勇. 余吾煤矿松软煤层水力割缝参数优化研究[J]. 矿业安全与环保,2022,49(2):61−65. HUANG Yong. Optimization study of hydraulic slotting parameters for soft coal seam in Yuwu Coal Mine[J]. Mining Safety & Environmental Protection,2022,49(2):61−65.
[55] 乔伟. 顺层长钻孔中压水力割缝增透技术及应用[J]. 矿业安全与环保,2022,49(2):122−126. QIAO Wei. Application on anti-reflection technology of long borehole along coal seam with medium pressure hydraulic slotting[J]. Mining Safety & Environmental Protection,2022,49(2):122−126.
[56] 李定启,邓广涛,李海贵,等. 钻杆内下套管防治软煤层钻孔塌孔技术[J]. 中国安全生产科学技术,2015,11(2):95−98. LI Dingqi, DENG Guangtao, LI Haigui, et al. Technology of preventing drilling hole collapse in soft coal seam by inserting casing in drill pipe[J]. Journal of Safety Science and Technology,2015,11(2):95−98.
[57] 刘勇,何岸,魏建平,等. 水射流卸压增透堵孔诱因及解堵新方法[J]. 煤炭学报,2016,41(8):1963−1967. LIU Yong, HE An, WEI Jianping, et al. Plugging factor and new plugging method to hydraulic relieving stress[J]. Journal of China Coal Society,2016,41(8):1963−1967.
[58] 刘晓,蔺海晓,张双斌,等. 瓦斯抽采钻孔修复机理与应用研究[J]. 中国煤炭,2014,40(1):102−105 doi: 10.3969/j.issn.1006-530X.2014.01.027 LIU Xiao, LIN Haixiao, ZHANG Shuangbin, et al. Research on gas drainage borehole restoration mechanism and application[J]. China Coal,2014,40(1):102−105 doi: 10.3969/j.issn.1006-530X.2014.01.027
[59] 杨威,罗黎明,王一涵,等. 煤微观结构化学调控及注水驱替瓦斯规律[J]. 煤炭学报,2023,48(8):3091−3101. YANG Wei, LUO Liming, WANG Yihan, et al. Chemical regulation of coal microstructure and study of water injection displacement gas law[J]. Journal of China Coal Society,2023,48(8):3091−3101.
[60] 黄林岗,林凌,罗文嘉. 煤层气中甲烷扩散及水锁效应的分子动力学研究[J]. 煤炭学报,2023,48(11):4124−4134. HUANG Lingang, LIN Ling, LUO Wenjia. A molecular dynamics study on coalbed methane diffusion and water-blocking effects[J]. Journal of China Coal Society,2023,48(11):4124−4134.
[61] 王方田,李哲,张村,等. 高瓦斯煤层大直径钻孔卸压增透瓦斯渗流时空演化机理[J]. 煤炭科学技术,2024,52(S1):47−61. WANG Fangtian, LI Zhe, ZHANG Cun, et al. Temporal and spatial evolution mechanism of large-diameter borehole pressure relief and permeable gas seepage in high gas coal seam[J/OL]. Coal Science and Technology, 2024, 52(S1):47−61
[62] 任仲久. 碎软煤层大直径钻孔围岩损伤演化及瓦斯运移规律模拟研究[J]. 矿业安全与环保,2024,51(1):92−101. REN Zhongjiu. Numerical study on fracture evolution and gas migration in the surrounding rock of large diameter drilling in crushed-soft coal seam[J]. Mining Safety & Environmental Protection,2024,51(1):92−101.
[63] 潘俊锋,闫耀东,马宏源,等. 一次成孔300 mm煤层大直径钻孔防冲效能试验[J]. 采矿与岩层控制工程学报,2022,4(5):5−15. PAN Junfeng, YAN Yaodong, MA Hongyuan, et al. Using 300 mm diameter boreholes for coal burst prevention a case study[J]. Journal of Mining And Strata Control,2022,4(5):5−15.
[64] 桂晓宏,林伯泉. 瓦斯爆炸过程中激波产生的影响因素及其热力动力分析[J]. 煤矿安全,2000,31(9):19−22. doi: 10.3969/j.issn.1003-496X.2000.09.009 GUI Xiaohong, LIN Baiquan. The influence factors of shock wave generation in gas explosion process and its thermodynamic dynamic analysis[J]. Safety in Coal Mines,2000,31(9):19−22. doi: 10.3969/j.issn.1003-496X.2000.09.009
[65] 林海飞,仇悦,王瑞哲,等. 多级脉冲超声波激励含水煤体瓦斯解吸特征的试验研究[J]. 煤炭学报,2024,49(3):1403−1413 LIN Haifei, QIU Yue, WANG Ruizhe, et al. Experimental study on gas desorption characteristics of hydrous coal by multistage pulsed ultrasonic excitation[J]. Journal of China Coal Society,2024,49(3):1403−1413.
[66] 董全. 大功率超声波增透技术对低渗透性煤层增透效果试验研究[J]. 煤炭技术,2022,41(2):153−156. DONG Quan. Experimental Study on Permeability Ehancement Effect of High Power Ultrasonic Technology in Low Permeability Coal Seam[J]. Coal Technology,2022,41(2):153−156.
[67] 肖晓春,潘一山,吕祥锋,等. 超声激励低渗煤层甲烷增透机理[J]. 地球物理学报,2013,56(5):1726−1733. doi: 10.6038/cjg20130530 XIAO Xiaochun, PAN Yishan, LYU Xiangfeng, et al. Mechanism of methane permeability enhance through ultrasonic irradiating on low permeable coal seam[J]. Chinese Journal of Geophysics,2013,56(5):1726−1733. doi: 10.6038/cjg20130530
[68] 张永民,邱爱慈,秦勇. 电脉冲可控冲击波煤储层增透原理与工程实践[J]. 煤炭科学技术,2017,45(9):79−85. ZHANG Yongmin, QIU Aici, QIN Yong. Principle and engineering practices on coal reservoir permeability improved with electric pulse controllable shock waves[J]. Coal Science and Technology,2017,45(9):79−85.
[69] 汪开旺. 高压空气爆破煤层增透效果考察[J]. 煤炭技术,2016,35(9):147−149. WANG Kaiwang. Testing of coal seam permeability improvement efficiency with high pressure air blasting[J]. Coal Technology,2016,35(9):147−149.
[70] 尉瑞,宋鑫,廉振山,等. CH4,CO2和N2及其多元气体在不同煤阶中吸附特性实验研究[J]. 煤炭技术,2022,41(10):129−134. YU Rui, SONG Xin, LIAN Zhenshan, et al. Experimental study on adsorption properties of CH4, CO2 and N2 and their multivariate gases in different coal ranks[J]. Coal Technology,2022,41(10):129−134.
[71] 刘勇,李志飞,魏建平,等. 磨料空气射流破煤冲蚀模型研究[J]. 煤炭学报,2020,45(5):1733−1742. LIU Yong, LI Zhifei, WEI Jianping, et al. Erosion model of abrasive air jet used in coal breaking[J]. Journal of China Coal Society,2020,45(5):1733−1742.
[72] 曹运兴,张新生,张军胜,等. CO2相变致裂煤的显微构造特征与成因机制[J]. 煤田地质与勘探,2023,51(2):137−145. doi: 10.12363/issn.1001-1986.22.07.0570 CAO Yunxing, ZHANG Xinsheng, ZHANG Junsheng, et al. Characteristics and formation mechanisms of microstructures in coal treated with CO2 phase transition fracturing[J]. Coal Geology & Exploration,2023,51(2):137−145. doi: 10.12363/issn.1001-1986.22.07.0570
[73] 杨百舸,张军胜,令狐建设,等. 突出煤层CO2气相压裂高效抽采防突掘进技术[J]. 煤田地质与勘探,2021,49(3):85−94. doi: 10.3969/j.issn.1001-1986.2021.03.011 YANG Baige, ZHANG Junsheng, LINGHU Jianshe, et al. An advanced CO2gas-phase fracturing technology for efficient methane drainage outburst prevention and excavation in outburst coal seam[J]. Coal Geology & Exploration,2021,49(3):85−94. doi: 10.3969/j.issn.1001-1986.2021.03.011
[74] 包头矿务局. 厚煤层顶板钻孔抽放瓦斯[J]. 煤矿安全,1979(1):17−24. BAOTOU Mining Bureau. Gas extraction by borehole in the roof of thick coal seam[J]. Safety in Coal Mines,1979(1):17−24.
[75] 阳泉矿务局. 瓦斯抽放和利用[J]. 煤矿安全,1974(4):14−29. YANGQUAN Mining Bureau. Gas extraction and utilization[J]. Safety in Coal Mines,1974(4):14−29.
[76] 王鲜,许超,王四一,等. 本煤层Φ650mm大直径钻孔技术与装备[J]. 金属矿山,2017(8):157−160. doi: 10.3969/j.issn.1001-1250.2017.08.028 WANG Xian, XU Chao, WANG Siyi, et al. Φ650 mm large diameter drilling technology and equipment for the coal seam[J]. Metal Mine,2017(8):157−160. doi: 10.3969/j.issn.1001-1250.2017.08.028
[77] 高彬彬,潘鹏飞,喻建,等. 一种机械水动力组合式扩孔装置[P]. CN201821314565.7,2019−08−02. [78] 李俊,李伯元. 巨厚煤层首分层回风大巷大直径钻孔卸压防冲技术研究[J]. 能源科技,2022(3):20. LI Jun, LI Boyuan. Research on Pressure Relief and Anti-scour Technology of Large Diameter Drilling in the First Layer Return Airway of Ultra-thick Coal Seam[J]. Energy Science and Technology,2022(3):20.
[79] 王海春,雷东记,代振华,等. 机械扩孔煤体增透应力变化规律研究[J]. 煤矿安全,2024,55(1):28−33. WANG Haichun, LEI Dongji, DAI Zhenhua, et al. Study on stress change law of coal body permeability improvement by mechanical reaming[J]. Safety in Coal Mines,2024,55(1):28−33.
[80] WANG W M, YUAN Y, DING K, et al. The optimization of segmented reaming parameters and the analysis of the pressure relief effect in impacted coal seams[J]. Processes,2023,11(4):1235. doi: 10.3390/pr11041235
[81] CHEN M, ZHANG Y L, ZANG C W, et al. Experimental investigation on pressure relief mechanism of specimens with prefabricated reaming boreholes[J]. Rock Mechanics and Rock Engineering,2023,56(4):2949−2966. doi: 10.1007/s00603-022-03159-1
[82] LIU S L, LIU R, ZHANG X H, et al. Stress optimization of coupling pins for large diameter reaming tool of coal-bed methane well[J]. Transactions of the Canadian Society for Mechanical Engineering,2012,36(1):1−21. doi: 10.1139/tcsme-2012-0001
[83] SHU B, MA B S. Study of ground collapse induced by large-diameter horizontal directional drilling in a sand layer using numerical modeling[J]. Canadian Geotechnical Journal,2015,52(10):1562−1574. doi: 10.1139/cgj-2014-0388
[84] 王方田,李哲,张村,等. 高瓦斯煤层大直径钻孔卸压增透瓦斯渗流时空演化机理[J]. 煤炭科学技术,2024,52(S1):1−15. WANG Fangtian, LI Zhe, ZHANG Cun, et al. Temporal and spatial evolution mechanism of large-diameter borehole pressure relief and permeable gas seepage in high gas coal seam[J]. Coal Science and Technology, 2024, 52(S1):1−15.
[85] 李俊,李伯元. 巨厚煤层首分层回风大巷大直径钻孔卸压防冲技术研究[J]. 能源科技,2022(3):20. LI Jun, LI Boyuan. Research on Pressure Relief and Anti-scour Technology of Large Diameter Drilling in the First Layer Return Airway of Ultra-thick Coal Seam[J]. Energy Science and Technology, 2022(3):20.
[86] 刘明举,任培良,刘彦伟,等. 水力冲孔防突措施的破煤理论分析[J]. 河南理工大学学报(自然科学版),2009,28(2):142−145. LIU Mingju, REN Peiliang, LIU Yanwei, et al. Breaking coal theoretical analysis of outburst prevention by hydraulic flushing[J]. Journal of Henan Polytechnic University (Natural Science),2009,28(2):142−145.
[87] 王兆丰,范迎春,李世生. 水力冲孔技术在松软低透突出煤层中的应用[J]. 煤炭科学技术,2012,40(2):52−55. WANG Zhaofeng, FAN Yingchun, LI Shisheng. Application of borehole hydraulic flushing technology to soft and outburst seam with low permeability[J]. Coal Science and Technology,2012,40(2):52−55.
[88] 李洪盛,刘送永,郭楚文. 自振脉冲射流预制裂隙对机械刀具破岩过程温度影响特性[J]. 煤炭学报,2021,46(7):2136−2145. LI Hongsheng, LIU Songyong, GUO Chuwen. Effect of crack prefabrication by self-oscillating pulsed jet on the temper-ature of conical pick during rock breaking processes[J]. Journal of China Coal Society,2021,46(7):2136−2145.
[89] 刘勇,郭鑫辉等. 岩弹冲击破岩规律试验研究[J]振动与冲击,2023,42(4):270−278. LIU Yong, GUO Xinhui, WEI Jianping, et al. Experimental study on the rock-bouncing impact breaking law[J]. Vibration and Impact, 2023, 42(4):270−278.
[90] 刘勇,魏建平等. 采用气动柔性刀具的卸压增透的方法[P]. CN202210269104.7. [91] 魏建平,刘勇,司磊磊,等. 一种水动力柔性刀具破煤卸压增透装置和方法[P]. CN202111550887.8,2023−07−21. [92] 刘勇,魏建平,徐向宇,等. 一种松软煤层中气动柔性刀具破煤卸压增透装置和方法[P]. CN202210037215.5,2022−05−13. [93] 姚邦华,郜英俊,魏建平,等. 水力驱动柔性刀具破煤关键参数及试验研究[J]. 采矿与安全工程学报,2024,41(3):588−596. YAO Banghua, GAO Yingjun, WEI Jianping et al. Key parameters and experimental research on hydraulic-driven flexible tools for coal breaking[J]. Journal of Mining & Safety Engineering,2024,41(3):588−596
[94] 刘勇,张志康,魏建平,等. 柔性刀具冲击破煤能量演化及关键参数[J]. 煤炭学报,2025,50(02):965−974. LIU Yong, ZHANG Zhikang, WEI Jianping, et al. Research on the energy evolution and key parameters of coal breaking by flexible cutting tools[J/OL]. Journal of China Coal Society, 2025, 50(02):965−974.
[95] CAO J F, ZOU D Y, LI C, et al. Simulation analysis of igneous rock breaking law under cut-impact load[J]. Chemistry and Technology of Fuels and Oils,2022,58(5):862−872. doi: 10.1007/s10553-022-01461-w
[96] LIU C W, DUAN M Y, HUANG Y Z, et al. Research on the mechanism and characteristics of ultrasonically coupled mechanical rock-breaking pre-fracturing technology[J]. Machines,2023,11(10):934. doi: 10.3390/machines11100934
[97] WANG Z W, ZENG Q L, WAN L R, et al. Investigation of combined rock-breaking ability of sawblade and conical pick[J]. Measurement Science and Technology,2024,35(5):055601. doi: 10.1088/1361-6501/ad25e5
[98] WANG W M, YUAN Y, DING K, et al. The optimization of segmented reaming parameters and the analysis of the pressure relief effect in impacted coal seams[J]. Processes,2023,11(4):1235. doi: 10.3390/pr11041235
[99] 翟成,丛钰洲,陈爱坤,等. 中国煤矿瓦斯突出灾害治理的若干思考及展望[J]. 中国矿业大学学报,2023,52(6):1146−1161. ZHAI Cheng, CONG Yuzhou, CHEN Aikun, et al. Reflection and prospect on the prevention of gas outburst disasters in China’s coal mines[J]. Journal of China University of Mining & Technology,2023,52(6):1146−1161.
[100] 袁易全. 《近代超声原理及应用》[M]. 南京:南京大学出版社,1996. [101] 庄爱民. 超声波采油技术装备的应用及发展前景[J]. 石油机械,1995(2):55−57. ZHUANG Aimin. Application and development prospect of ultrasonic oil production technology and equipment[J]. China Petroleum Machinery,1995(2):55−57.
[102] MOHAMMADIAN E, JUNIN R, RAHMANI O, et al. Effects of sonication radiation on oil recovery by ultrasonic waves stimulated water-flooding[J]. Ultrasonics,2013,53(2):607−614. doi: 10.1016/j.ultras.2012.10.006
[103] ABRAMOV V O, MULLAKAEV M S, ABRAMOVA A V, et al. Ultrasonic technology for enhanced oil recovery from failing oil wells and the equipment for its implemention[J]. Ultrasonics Sonochemistry,2013,20(5):1289−1295. doi: 10.1016/j.ultsonch.2013.03.004
[104] 徐龙君,鲜学福,刘成伦,等. 恒电场作用下煤吸附甲烷特征的研究[J]. 煤炭转化,1999,22(4):68−70. XU Longjun, XIAN Xuefu, LIU Chenglun, et al. Study on adsorption characteristics of coal to methane under direct current electric field[J]. Coal Conversion,1999,22(4):68−70.
[105] 徐龙君,鲜学福,李晓红,等. 交变电场下白皎煤介电常数的实验研究[J]. 重庆大学学报(自然科学版),1998(3):8−12. XU Longjun, XIAN Xuefu, LI Xiaohong, et al. Experimental study on dielectric constant of Baijiao coal under alternating electric field[J]. Journal of Chongqing University,1998(3):8−12.
[106] 王宏图,杜云贵,鲜学福,等. 地电场对煤中瓦斯渗流特性的影响[J]. 重庆大学学报(自然科学版),2000,23(S1):22−24. WANG Hongtu, DU Yungui, XIAN Xuefu, et al. The Influence of Geo-elecfric Field on Gas Seepage Properties in Coal[J]. Journal of Chongqing University,2000,23(S1):22−24.
[107] 李树刚,王瑞哲,林海飞,等. 超声波功率对煤体孔隙结构损伤及渗流特性影响实验研究[J]. 采矿与安全工程学报,2022,39(2):396−404. LI Shugang, WANG Ruizhe, LIN Haifei, et al. Experimental study on the influence of ultrasonic power on coal pore structure damage and seepage characteristics[J]. Journal of Mining & Safety Engineering,2022,39(2):396−404.
[108] 张春会,李其廉,于永江,等. 功率超声致煤层瓦斯升温机理[J]. 辽宁工程技术大学学报(自然科学版),2009,28(4):525−528. ZHANG Chunhui, LI Qilian, YU Yongjiang, et al. Power ultrasound-induced heating mechanism of gas in coal seam[J]. Journal of Liaoning Technical University (Natural Science),2009,28(4):525−528.
[109] 师庆民. 超声波加载煤岩物性响应及其作用机理[D]. 徐州:中国矿业大学,2018. SHI Qingmin. Response and mechanism of coal physical properties under ultrasonic Load[D]. Xuzhou:China University of Mining and Technology, 2018
[110] 王云刚,李满贵,陈兵兵,等. 干燥及饱和含水煤样超声波特征的实验研究[J]. 煤炭学报,2015,40(10):2445−2450. WANG Yungang, LI Mangui, CHEN Bingbing, et al. Experimental study on ultrasonic wave characteristics of coal samples under dry and water saturated conditions[J]. Journal of China Coal Society,2015,40(10):2445−2450.
[111] YANG E H, LIN H F, LI S G, et al. Characteristic strength and energy evolution law of coal treated by ultrasonic wave with different power under uniaxial compression[J]. Natural Resources Research,2022,31(2):913−928. doi: 10.1007/s11053-022-10015-0
[112] 李树刚,王瑞哲,林海飞,等. 超声波功率对煤体孔隙结构损伤及渗流特性影响实验研究[J]. 采矿与安全工程学报,2022,39(2):396−404. LI Shugang, WANG Ruizhe, LIN Haifei, et al. Experimental study on the influence of ultrasonic power on coal pore structure damage and seepage characteristics[J]. Journal of Mining & Safety Engineering,2022,39(2):396−404.
[113] 于国卿. 超声波对煤体孔隙结构影响规律研究[D]. 徐州:中国矿业大学,2018. YU Guoqing. Study on the influence law of ultrasonic wave on coal pore structure[D]. Xuzhou:China University of Mining and Technology, 2018.
[114] LIU G H, LIU Z T, FENG J J, et al. Experimental research on the ultrasonic attenuation mechanism of coal[J]. Journal of Geophysics and Engineering,2017,14(3):502−512. doi: 10.1088/1742-2140/aa5f23
[115] 苏士龙. 坚硬厚煤层可控冲击波增透技术应用[J]. 煤炭工程,2020,52(9):71−75. SU Shilong. Application of controllable shock wave for permeability enhancement in hard thick coal seam[J]. Coal Engineering,2020,52(9):71−75.
[116] 白建梅,程浩,祖世强,等. 大功率脉冲技术对低产煤层气井增产可行性探讨[J]. 中国煤层气,2010,7(6):24−26. doi: 10.3969/j.issn.1672-3074.2010.06.006 BAI Jianmei, CHENG Hao, ZU Shiqiang, et al. Discussion on feasibility of enhancing production of low-production CBM wells by using powerful pulse techniques[J]. China Coalbed Methane,2010,7(6):24−26. doi: 10.3969/j.issn.1672-3074.2010.06.006
[117] 秦勇,邱爱慈,张永民. 高聚能重复强脉冲波煤储层增渗新技术试验与探索[J]. 煤炭科学技术,2014,42(6):1−7,70. QIN Yong, QIU Aici, ZHANG Yongmin. Experiment and discovery on permeability improved technology of coal reservoir based on repeated strong pulse waves of high energy accumulation[J]. Coal Science and Technology,2014,42(6):1−7,70.
[118] LIU Q J, DING W D, ZHOU H B, et al. A novel strain measurement system in strong electromagnetic field[J]. IEEE Transactions on Plasma Science,2015,43(10):3562−3567. doi: 10.1109/TPS.2015.2418276
[119] LI X W, CHAO Y C, WU J, et al. Study of the shock waves characteristics generated by underwater electrical wire explosion[J]. 2015, 118(2):023301.
[120] 张永民,邱爱慈,周海滨,等. 面向化石能源开发的电爆炸冲击波技术研究进展[J]. 高压电技术,2016,42(4):1009−1017. ZHANG Yongmin, QIU Aici, ZHOU Haibin1, et al. Research Progress in Electrical Explosion Shockwave Technology for Developing Fossil Energy[J]. High Voltage Engineering,2016,42(4):1009−1017.
[121] 李恒乐,秦勇,张永民,等. 重复脉冲强冲击波对肥煤孔隙结构影响的实验研究[J]. 煤炭学报,2015,40(4):915−921. LI HengYue, QIN Yong, ZHANG Yongmin, et al. Experimental study on the effect of strong repetitive pulse shockwave on the pore structure of fat coal[J]. Journal of China Coal Society,2015,40(4):915−921.
[122] 安世岗,陈殿赋,张永民,等. 可控电脉冲波增透技术在低透气性煤层中的应用[J]. 煤田地质与勘探,2020,48(4):138−145. doi: 10.3969/j.issn.1001-1986.2020.04.020 AN Shigang, CHEN Dianfu, ZHANG Yongmin, et al. Application of controllable electric pulse wave permeability-enhancing technology in the low-permeability coal seams[J]. Coal Geology & Exploration,2020,48(4):138−145. doi: 10.3969/j.issn.1001-1986.2020.04.020
[123] 张书金,陈蒙磊,张锡兵,等. 可控冲击波煤层增透技术应用研究[J]. 煤炭技术,2023,42(9):129−133. ZHANG Shujin1, CHEN Menglei, ZHANG Xibing, Application of Controllable Shock Wave to Increase Coal Seam Permeability[J]. Coal Technology, 2023, 42(9):129−133.
[124] 张永民,安世岗,陈殿赋,等. 可控冲击波增透保德煤矿8#煤层的先导性试验[J]. 煤矿安全,2019,50(10):14−17,21. ZHANG Yongmin, AN Shigang, CHEN Dianfu, et al. Preliminary tests of coal reservoir permeability enhancement by controllable shock waves in Baode coal mine 8# coal seam[J]. Safety in Coal Mines,2019,50(10):14−17,21.
[125] 张迪,张永民,李建栋,等. 可控冲击波煤层增透技术在穿层钻孔中的应用[J]. 煤炭工程,2023,55(6):73−78. ZHANG Di, ZHANG Yongmin, LI Jiandong, et al. Application of controllable shock wave seam permeability enhancement in cross-seam drilling[J]. Coal Engineering,2023,55(6):73−78.
[126] 李恒乐. 煤岩电脉冲应力波致裂增渗行为与机理[D]. 徐州:中国矿业大学,2015. LI (Heng)(Le| Yue). Behavior and mechanism of coal and rock electric pulse stress wave cracking and permeability increase[D]. Xuzhou:China University of Mining and Technology, 2015.
[127] 丁聪. 微波照射对TBM滚刀破岩效率的影响规律试验研究[D]. 郑州:华北水利水电大学,2022. DING Cong. Experimental study on the influence of microwave irradiation on the rock breaking efficiency of TBM hob[D]. Zhengzhou:North China University of Water Resources and Electric Power, 2022.
[128] FOLORUNSO O, DODDS C, DIMITRAKIS G, et al. Continuous energy efficient exfoliation of vermiculite through microwave heating[J]. International Journal of Mineral Processing,2012,114:69−79.
[129] ARAFAT HOSSAIN M, GANESAN P, JEWARATNAM J, et al. Optimization of process parameters for microwave pyrolysis of oil palm fiber (OPF) for hydrogen and biochar production[J]. Energy Conversion and Management,2017,133:349−362. doi: 10.1016/j.enconman.2016.10.046
[130] CHEN W H, YE S C, SHEEN H K. Hydrolysis characteristics of sugarcane bagasse pretreated by dilute acid solution in a microwave irradiation environment[J]. Applied Energy,2012,93:237−244. doi: 10.1016/j.apenergy.2011.12.014
[131] 李明川. 多孔介质中天然气水合物注热水分解理论及实验研究[D]. 成都:西南石油学院,2005. LI Mingchuan. Theoretical and experimental study on decomposition of natural gas hydrate in porous media by hot water injection[D]. Chengdu:Southwest petroleum university, 2005.
[132] 郄博洋,李沛,苗腾飞,等. 微波辐照再生活性炭试验研究[J]. 黄金科学技术,2022,30(2):291−301. doi: 10.11872/j.issn.1005-2518.2022.02.138 QIE Boyang, LI Pei, MIAO Tengfei, et al. Experimental study on regeneration of activated carbon by microwave irradiation[J]. Gold Science and Technology,2022,30(2):291−301. doi: 10.11872/j.issn.1005-2518.2022.02.138
[133] YANG N, HU G Z, ZHU J, et al. Evolution of pore-fracture structure and permeability of coal by microwave irradiation under uniaxial compression[J]. Journal of Natural Gas Science and Engineering,2022,107:104759. doi: 10.1016/j.jngse.2022.104759
[134] 钟玉婷. 微波辐射下煤体分级热响应及致裂增透特性研究[D]. 徐州:中国矿业大学,2022. ZHONG Yuting. Study on thermal response of coal classification and characteristics of cracking and permeability enhancement under microwave radiation[D]. Xuzhou:China University of Mining and Technology, 2022.
[135] 李贺. 微波辐射下煤体热力响应及其流−固耦合机制研究[D]. 徐州:中国矿业大学,2018. LI He. Thermodynamical Response of Coal and the Hydraulic-mechanical Coupling Mechanism under Microwave Irradiation[D]. Xuzhou:China University of Mining and Technology, 2018.
[136] 曹轩. 微波热循环作用对含水煤体的致裂增透特性研究[D]. 徐州:中国矿业大学,2021. CAO Xuan. Study on cracking and permeability enhancement characteristics of water-bearing coal under microwave thermal cycle[D]. Xuzhou:China University of Mining and Technology, 2021.
[137] HONG Y D, LIN B Q, ZHU C J, et al. Temperature rising characteristic of coal powder during microwave heating[J]. Fuel,2021,294:120495. doi: 10.1016/j.fuel.2021.120495
[138] YANG N, HU G Z, QIN W, et al. Experimental study on mineral variation in coal under microwave irradiation and its influence on coal microstructure[J]. Journal of Natural Gas Science and Engineering,2021,96:104303. doi: 10.1016/j.jngse.2021.104303
[139] 潘井澜,梁伟东. 预裂爆破技术的发展[J]. 金属矿山,1996(9):12−14. PAN Jinglan, LIANG Weidong. Development of the Pre-splitting Blasting Technique[J]. Metal Mine,1996(9):12−14.
[140] 铁道部科学研究院西南研究所. 光面爆破和预裂爆破技术(上)[J]. 铁道建筑,1976(1):1−7. Southwest Research Institute, Scientific Research Institute of Railways. Smooth Blasting and presplitting techniques (Part 1)[J]. Railway Engineering,1976(1):1−7.
[141] 铁道部科学研究院西南研究所. 光面爆破和预裂爆破技术(下)[J]. 铁道建筑,1976(2):5−11. Southwest Research Institute, Scientific Research Institute of Railways. Smooth Blasting and presplitting techniques (Part 2)[J]. Railway Engineering,1976(2):5−11.
[142] PAL ROY P, SAWMLIANA C, BHAGAT N K, et al. Induced caving by blasting:Innovative experiments in blasting gallery panels of underground coal mines of India[J]. Mining Technology,2003,112(1):57−63. doi: 10.1179/037174503225011036
[143] 国内外防治煤和瓦斯突出措施的现状和动态[J]. 川煤科技,1976,(S1):30−48. Current situation and trends of measures to prevent coal and gas outburst at home and abroad[J]. Mining Safety & Environmental Protection, 1976, (S1):30−48.
[144] 重庆煤炭科学研究所. 国内外防治煤和瓦斯突出措施的现状和动态[J]. 矿业安全与环保,1976(3):30−48. Chongqing Coal Research Institute. Current situation and trends of measures to prevent coal and gas outburst at home and abroad[J]. Mining Safety & Environmental Protection,1976(3):30−48.
[145] 王志亮. 煤层深孔预裂爆破裂隙扩展机理与应用研究[D]. 北京:中国矿业大学,2009. WANG Zhiliang. Mechanism and Application Reaearches on Fracture Propagation of Deep-hole Pre-Splitting Blasting in Coal Seam[D]. Beijing:China University of Mining and Technology(Beijing), 2009.
[146] 朱帅虎. 低透气性煤层粉乳炸药预裂爆破增透实验及工艺研究[D]. 北京:中国矿业大学,2014. ZHU Shuaihu. The study on permeability increasing experiments and techniques by deep hole pre-splitting blasting with powder-emulsionin explosive in low permeability coal seam [D]. Beijing:China University of Mining and Technology, 2014.
[147] 张天经. 低透性煤层深孔预裂爆破增透数值模拟研究[D]. 淮南:安徽理工大学,2018. ZHANG Tianjing. Numerical simulation study on permeability enhancement by deep-hole presplitting blasting in low permeability coal seam[D]. Huainan:Anhui University of Science & Technology, 2018.
[148] 蔡峰. 高瓦斯低透气性煤层深孔预裂爆破强化增透效应研究[D]. 淮南:安徽理工大学,2009. CAI Feng. Study on enhanced permeability enhancement effect of deep hole presplitting blasting in high gas and low permeability coal seam[D]. Huainan:Anhui University of Science & Technology, 2009.
[149] 王凯飞,张昌锁,郝兵元,等. 高地力环境下聚能爆破动、静作用对岩石内裂纹起裂与扩展机理研究[J]. 煤炭科学技术,2023,51(S1):50−64. WANG Kaifei, ZHANG Changsuo, HAO Bingyuan, et al. Study on initiation and propagation mechanism of internal cracks caused by dynamic and static action of shaped charge blasting under in-situ stress[J]. Coal Science and Technology,2023,51(S1):50−64.
[150] 王海东. 深部开采低渗透煤层预裂控制爆破增透机理研究[D]. 哈尔滨:中国地震局工程力学研究所,2012. WANG Haidong. Study on permeability enhancement mechanism of pre-splitting controlled blasting in deep mining low permeability coal seam[D]. Harbin:Institute of Engineering Mechanics, China Earthquake Administration, 2012.
[151] 吴亮,卢文波,宗琦. 岩石中柱状装药爆炸能量分布[J]. 岩土力学,2006,27(5):735−739. WU Liang, LU Wenbo, ZONG Qi. Distribution of explosive energy consumed by column charge in rock[J]. Rock and Soil Mechanics,2006,27(5):735−739.
[152] 白赞成. 略论深孔松动爆破防止突出[J]. 中州煤业,1990,12(1):36−38. BAI Zancheng. A brief discussion on deep hole loosening blasting to prevent outburst[J]. China Energy and Environmental Protection,1990,12(1):36−38.
[153] 曾范永. 煤体高压气体爆破致裂规律的实验研究[J]. 煤矿安全,2019,50(1):13−16. ZENG Fanyong. Experimental study on cracking laws of high pressure gas explosion in coal[J]. Safety in Coal Mines,2019,50(1):13−16.
[154] 刘健,刘泽功,石必明. 低透气性突出煤层巷道快速掘进的试验研究[J]. 煤炭学报,2007,32(8):827−831. doi: 10.3321/j.issn:0253-9993.2007.08.010 LIU Jian, LIU Zegong, SHI Biming. Study on the roadway excavation rapidly in the low permeability outburst coal seam[J]. Journal of China Coal Society,2007,32(8):827−831. doi: 10.3321/j.issn:0253-9993.2007.08.010
[155] 徐颖. 高压气体爆破采煤技术的发展及其在我国的应用[J]. 爆破,1998(1):67−69,82. XU Ying. Development of high pressure gas blasting coal mining technology and its application in China[J]. Blasting,1998(1):67−69,82.
[156] 郭志兴. 液态二氧化碳爆破筒及现场试爆[J]. 爆破,1994(3):72−74. GUO Zhixing. Liquid carbon dioxide detonator and field test explosion[J]. Blasting,1994(3):72−74.
[157] 李守国,高压空气爆破煤层增透关键技术与装备研发[J]. 煤炭科学技术,2015,43(2):92−95. LI Shouguo. Key technology and equipment research and development of improving coal seam permeability by high pressure air blasting[J]. Coal Science and Technology, 2015, 43(2):92−95.
[158] 汪开旺,高压空气爆破技术装备研发及应用[J]. 煤炭科学技术,2016,44(12):136−140. WANG Kaiwang. Research and development and application of high pressure air blasting technology and equipment[J]. Coal Science and Technology, 2016, 44(12):136−140.
[159] 王炎林,温鸿达. 空气爆破技术对煤层气储层增透适用性的模拟实验研究[J]. 煤矿爆破,2023,41(3):9−16. WANG Yanlin, WEN Hongda. Simulated experimental study on the applicability of air blasting technology to permeability enhancement of coal seam reservoir[J]. Coal Mine Bla sting,2023,41(3):9−16.
[160] 李守国,吕进国,贾宝山,等. 高压空气爆破低透气性煤层增透技术应用研究[J]. 中国安全科学学报,2016,26(4):119−125. LI Shouguo, LYU Jinguo, JIA Baoshan, et al. Anti-reflection technology application study of high pressure air blasting low permeability coal seam[J]. China Safety Science Journal,2016,26(4):119−125.
[161] 褚怀保,王昌,杨小林,等. 煤体高压空气爆破模拟试验研究[J]. 振动与冲击,2022,41(20):54−60,157. CHU Huaibao, WANG Chang, YANG Xiaolin, et al. A simulation experimental study on high-pressure air blasting of coal[J]. Journal of Vibration and Shock,2022,41(20):54−60,157.
[162] ZHU W C, GAI D, WEI C H, et al. High-pressure air blasting experiments on concrete and implications for enhanced coal gas drainage[J]. Journal of Natural Gas Science and Engineering,2016,36:1253−1263. doi: 10.1016/j.jngse.2016.03.047
[163] 魏建平,蔡玉波,刘勇,等. 非刀具破岩理论与技术研究进展与趋势[J]. 煤炭学报,2024,49(2):801−832. WEI Jianping, CAI Yubo, LIU Yong, et al. Progress and trends in non-tool rock breaking theory and technology[J]. Journal of China Coal Society,2024,49(2):801−832.
[164] 徐颖,程玉生. 高压气体爆破破煤机理模型试验研究[J]. 煤矿爆破,1996,14(3):1−4,15. XU Ying, CHENG Yusheng. Experimental study on mechanism model of coal breaking by high pressure gas blasting[J]. Coal Mine Blasting,1996,14(3):1−4,15.
[165] VANBERGEN F, PAGNIER H, VANDERMEER L, et al. Development of a field experiment of CO2 storage in coal seams in the upper Silesian basin of Poland (recopol)[M]. Greenhouse gas control technologies:6th international conference. Amsterdam:Elsevier, 2003:569−574.
[166] Bergen F V, Pagnier H, Krzystolik P. Field experiment of CO2-EBCM in the Upper Silesian Basin of Poland[C]//Proceedings of the 8th International Conference on Greenhouse Gas Control Technologies, Trondheim, Norway, June 19−22, 2006.
[167] CLARKSON C R, BUSTIN R M. Binary gas adsorption/desorption isotherms:Effect of moisture and coal composition upon carbon dioxide selectivity over methane[J]. International Journal of Coal Geology,2000,42(4):241−271. doi: 10.1016/S0166-5162(99)00032-4
[168] GUNTER W, MAVOR M, ROBINSON J. CO2 storage and enhanced methane productionField testing at Fenn-Big Valley, Alberta, Canada, with application[M]. Greenhouse gas control technologies 7. Amsterdam:Elsevier, 2005:413−421.
[169] SHI J Q, DURUCAN S, FUJIOKA M. A reservoir simulation study of CO2 injection and N2 flooding at the Ishikari coalfield CO2 storage pilot project, Japan[J]. International Journal of Greenhouse Gas Control,2008,2(1):47−57. doi: 10.1016/S1750-5836(07)00112-0
[170] Yamaguchi, s. , Ohga, K. , Fujioka, M. , Muto, S. Field experience of Japan CO2 geosequestration in coal seams project(JCOP)[C]. Proceedings of the 8th International Conference on Greenhouse Gas Control Technologies, Trondheim, Norway, June 19−22, 2006.
[171] 刘飞. 山西沁水盆地煤岩储层特征及高产富集区评价[D]. 成都:成都理工大学,2007. LIU Fei. Characteristics of coal and rock reservoirs and evaluation of high yield and enrichment areas in Qinshui Basin, Shanxi Province[D]. Chengdu:Chengdu University of Technology, 2007.
[172] 王立国. 注气驱替深部煤层CH4实验及驱替后特征痕迹研究[D]. 徐州:中国矿业大学,2013. WANG Liguo. Experiment of gas injection displacing deep coal seam CH4 and study on characteristic trace after displacement[D]. Xuzhou:China University of Mining and Technology, 2013.
[173] 龙泳翰,张磊,李菁华,等. 注气驱替机理研究现状及展望[J]. 矿业安全与环保,2023,50(1):103−108,114. LONG Yonghan, ZHANG Lei, LI Jinghua, et al. Research status and prospect of gas injection displacement mechanism[J]. Mining Safety & Environmental Protection,2023,50(1):103−108,114.
[174] 姜延航,周露函,白刚,等. 煤层注热CO2驱替CH4特性实验研究[J]. 中国安全生产科学技术,2022,18(10):70−77. JIANG Yanhang, ZHOU Luhan, BAI Gang, et al. Experimental research on characteristics of CH4 displacement by injecting hot CO2 into coal seam[J]. Journal of Safety Science and Technology,2022,18(10):70−77.
[175] 石强,陈军斌,黄海,等. 注气驱替提高煤层气采收率实验研究[J]. 煤矿安全,2018,49(5):10−13. SHI Qiang, CHEN Junbin, HUANG Hai, et al. Experimental study on improving coalbed methane recovery by gas injection[J]. Safety in Coal Mines,2018,49(5):10−13.
[176] 林海飞,季鹏飞,孔祥国,等. 我国低渗煤层井下注气驱替增流抽采瓦斯技术进展及前景展望[J]. 煤炭学报,2023,48(2):730−749. LIN Haifei, JI Pengfei, KONG Xiangguo, et al. Progress and prospect of gas extraction technology by underground gas injection displacement for increasing flow in low-permeability coal seam in China[J]. Journal of China Coal Society,2023,48(2):730−749.
[177] 周西华,韩明旭,白刚,等. CO2注气压力对瓦斯扩散系数影响规律实验研究[J]. 煤田地质与勘探,2021,49(1):81−86,99. ZHOU Xihua, HAN Mingxu, BAI Gang, et al. Experimental study on the influence of CO2 injection pressure on gas diffusion coefficient[J]. Coal Geology & Exploration,2021,49(1):81−86,99.
[178] 李菁华,张磊,薛俊华,等. 注气驱替中CO2置换煤体CH4行为特性[J]. 煤炭学报,2021,46(S1):385−395. LI Jinghua, ZHANG Lei, XUE Junhua, et al. Behavior of CO2 replacing coal CH4 in gas injection displacement[J]. Journal of China Coal Society,2021,46(S1):385−395.
[179] 杨宏民,鲁小凯,陈立伟. 不同注源气体置换−驱替煤层甲烷突破时间的差异性分析[J]. 重庆大学学报,2018,41(2):96−102. YANG Hongmin, LU Xiaokai, CHEN Liwei. Analysis on the difference of breakthrough time for different injection gases to replace-displace methane in coal seams[J]. Journal of Chongqing University,2018,41(2):96−102.
[180] 杨宏民. 井下注气驱替煤层甲烷机理及规律研究[D]. 焦作:河南理工大学,2010. YANG Hongmin. Study on mechanism and law of gas injection in underground to displace methane in coal seam[D]. Jiaozuo:Henan Polytechnic University, 2010.
[181] SCHOOLER D R. The use of carbon dioxide for dislodging coal in mines[J]. 1944.
[182] WEIR P, EDWARDS J H. Mechanical loading and Cardox revolutionize an old mine[J]. Coal Age,1928,33:288−290.
[183] 徐颖,程玉生,王家来. 国外高压气体爆破[J]. 煤炭科学技术,1997,25(5):2. XU Ying, CHENG Yusheng, WANG Jialai. High pressure gas blasting abroad[J]. Coal Science and Technology, 1 1997, 25(5):2.
[184] 涂书芳. 二氧化碳相变破岩理论与装备技术[J]. 水电与新能源,2022,36(11):27−30. TU Shufang. On the carbon dioxide phase transition based rock breaking theory and equipment[J]. Hydropower and New Energy,2022,36(11):27−30.
[185] 成诗冰,洪志先. 液态CO2致裂技术在管廊基坑台阶开挖中的应用[J]. 工程爆破,2021,27(5):80−89. CHENG Shibing, HONG Zhixian. Application of liquid CO2 fracturing technology in bench excavation of utility tunnel foundation pit[J]. Engineering Blasting,2021,27(5):80−89.
[186] WANG X L, LI H, LI R W. Study on the cracking and penetration effect of liquid carbon dioxide phase transition[J]. Geotechnical and Geological Engineering,2022,40(5):2811−2821. doi: 10.1007/s10706-022-02064-2
[187] LIU G F, LI B L, ZHANG Z, et al. Effects of liquid CO2 phase transition fracturing on methane adsorption of coal[J]. Energy & Fuels,2023,37(3):1949−1961.
[188] 雷云. 低渗透高瓦斯煤层二氧化碳相变致裂增透理论及实验研究[D]. 成都:西南石油大学,2018. LEI Yun. Theoretical and experimental study on carbon dioxide phase change cracking and permeability enhancement in low permeability and high gas coal seam[D]. Chengdu:Southwest Petroleum University, 2018.
[189] LIU X F, JIA X Q, NIU Y, et al. Alterations in coal mechanical properties and permeability influenced by liquid CO2 phase change fracturing[J]. Fuel,2023,354:129254. doi: 10.1016/j.fuel.2023.129254
[190] 周盛涛,罗学东,蒋楠,等. 二氧化碳相变致裂技术研究进展与展望[J]. 工程科学学报,2021,43(7):883−893. ZHOU Shengtao, LUO Xuedong, JIANG Nan, et al. A review on fracturing technique with carbon dioxide phase transition[J]. Chinese Journal of Engineering,2021,43(7):883−893.
[191] 袁永,陈忠顺,梁小康,等. 二氧化碳相变爆破致裂机理与应用研究进展[J]. 煤炭科学技术,2024,52(2):63−78. YUAN Yong, CHEN Zhongshun, LIANG Xiaokang, et al. Mechanism and application of carbon dioxide phase change blasting fracturing[J]. Coal Science and Technology,2024,52(2):63−78.
[192] 李珍宝. 液态CO2低温致裂及相变驱替促抽煤层CH4机制研究[D]. 西安:西安科技大学,2017. LI Zhenbao. Study on the mechanism of low-temperature cracking of liquid CO2 and phase change displacement to promote extraction of CH4 from coal seam[D]. Xi’an:Xi’an University of Science and Technology, 2017.
[193] CHO M W, CHO W S, PARK D S, et al. Application of powder blasting techniques to micro-pattern making process for Si3N4-hBN composites[J]. Key Engineering Materials,2005,287:51−56. doi: 10.4028/www.scientific.net/KEM.287.51
[194] CHEN L C, LIAO Y S. Determination of mask opening size in creating a fluid hole on brittle material by double-side sand blasting[J]. The International Journal of Advanced Manufacturing Technology,2006,29(5):511−517. doi: 10.1007/s00170-005-2547-7
[195] 樊晶明,王成勇,王军. 微磨料空气射流加工技术的发展[J]. 金刚石与磨料磨具工程,2005,25(1):25−30,35. FAN Jingming, WANG Chengyong, WANG Jun. Development of micro abrasive jet machining technology[J]. Diamond & Abrasives Engineering,2005,25(1):25−30,35.
[196] LIU Y, ZHANG J, WEI J P, et al. Optimum structure of a Laval nozzle for an abrasive air jet based on nozzle pressure ratio[J]. Powder Technology,2020,364:343−362. doi: 10.1016/j.powtec.2020.01.086
[197] 陈长江. 高压磨料气体射流破煤应力波传播模型研究[D]. 焦作:河南理工大学,2019. CHEN Changjiang. Study on stress wave propagation model of high pressure abrasive gas jet breaking coal[D]. Jiaozuo:Henan Polytechnic University, 2019.
[198] 何岸. 磨料气体射流破煤岩喷嘴结构优化[D]. 焦作:河南理工大学,2017. HE An. Structure optimization of nozzle for breaking coal and rock by abrasive gas jet[D]. Jiaozuo:Henan Polytechnic University, 2017.
[199] LI Z D, ZHANG G Q, LI Z, et al. Simulation of gas flow field in Laval nozzle and straight nozzle for powder metallurgy and spray forming[J]. Journal of Iron and Steel Research (International),2008,15(6):44−47. doi: 10.1016/S1006-706X(08)60264-2
[200] 杨恒,魏建平,蔡玉波,等. 后混合磨料空气射流喷嘴结构优化及破煤效果研究[J]. 煤田地质与勘探,2023,51(2):114−126. YANG Heng, WEI Jianping, CAI Yubo, et al. Structure optimization and coal breaking effect of air jet nozzle for post-mixed abrasive[J]. Coal Geology & Exploration,2023,51(2):114−126.
[201] 张娟. 膨胀比对高压磨料气体射流破煤影响规律研究[D]. 焦作:河南理工大学,2020. ZHANG Juan. Study on the influence of expansion ratio on coal breaking by high pressure abrasive gas jet[D]. Jiaozuo:Henan Polytechnic University, 2020.
[202] 陈长江,刘勇,魏建平,等. 不同膨胀比下气体射流流场结构及脉动频率[J]. 煤炭学报,2021,46(12):3883−3890. CHEN Changjiang, LIU Yong, WEI Jianping, et al. Flow field structure and pulsation frequency of air jet under different pressure ratios[J]. Journal of China Coal Society,2021,46(12):3883−3890.
[203] LIU Y, ZHANG J, WEI J P, et al. Optimum structure of a Laval nozzle for an abrasive air jet based on nozzle pressure ratio[J]. Powder Technology,2020,364:343−362. doi: 10.1016/j.powtec.2020.01.086
[204] LIU Y, CUI J W, XU Z Y, et al. Comparison of the rock breakage pressure of abrasive water jets and abrasive air jets[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources,2020,6(1):27. doi: 10.1007/s40948-020-00150-4
[205] 刘勇,代硕,魏建平,等. 低压磨料空气射流破硬岩规律及特征实验研究[J]. 岩石力学与工程学报,2022(6):41. LIU Yong, Dai Shuo, WEI Jianping, et al. Experimental study on the law and characteristics of hard rock breaking by low-pressure abrasive air jet[J]. Chinese Journal of Rock Mechanics and Engineering,2022(6):41.
[206] 刘勇,张涛,魏建平,等. 磨料属性影响高压磨料气体射流破岩效果的理论及实验研究[J]. 煤炭学报,2018,43(5):1335−1342. LIU Yong, ZHANG Tao, WEI Jianping, et al. Theoretical and experimental study on the effects of abrasive material properties in high pressure abrasive gas jet[J]. Journal of China Coal Society,2018,43(5):1335−1342.
[207] 刘勇,魏建平,王登科,等. 磨料气体射流冲蚀磨损岩石特征分析[J]. 煤炭学报,2018,43(11):3033−3041. LIU Yong, WEI Jianping, WANG Dengke, et al. Erosive wear characteristic of rock impacted by abrasive gas jet[J]. Journal of China Coal Society,2018,43(11):3033−3041.
[208] 万继伟,牛争鸣,牛助农. 高速水射流粉碎中射流冲击区水垫的增阻效应[J]. 化工进展,2012,31(1):30−34. WAN Jiwei, NIU Zhengming, NIU Zhunong. Research of water cushion increased resistance effect of jet impact area during the process of high-speed water jet crushing[J]. Chemical Industry and Engineering Progress,2012,31(1):30−34.
[209] 刘沛清,高季章,李永梅. 多层水股射流在水垫塘内的流动特征与动水垫效应分析[J]. 水利学报,1999(3):7. LIU Peiqing, GAO Jizhang, LI Yongmei. Analysis of flow characteristics and dynamic water cushion effect of multi-layer water jet in water cushion pond[J]. Journal of Hydraulic Engineering,1999(3):7.
[210] RANJITH P G, LIU Y, WEI J P, et al. Effect of abrasive mass flow on the abrasive acceleration and erosion rates of abrasive gas jets[J]. Rock Mechanics and Rock Engineering,2019,52(9):3085−3102. doi: 10.1007/s00603-019-01746-3