煤岩体多场多相流体介质压裂试验装置研制与监测应用

Development and monitoring application of multi-field multi-phase fluid medium fracturing test device for coal and rock mass

  • 摘要: 煤岩体压裂物理试验是检验理论推导、数值计算是否有效可靠的重要途径,同时也可为现场工业性应用提供技术支持。但在不同流体介质压裂试验对比、内部裂缝扩展监测方面仍存在不足。为掌握液态、气态、超临界态等多相流体介质注入条件下煤岩体在应力−裂隙−渗流多物理场中压裂裂缝的扩展机制,自主研发了煤岩体多场多相流体介质压裂试验装置。试验装置主要由高压流体注入模块、真三轴液压伺服模块、回压计量模块、数据信息采集模块组成。具体特点如下:① 不同压裂液的注入装置通过管路分别与KDHSH100型双缸高压精密注入泵或气体增压泵相连接,之后通过真三轴仪的气液进口与压裂管连接煤岩体试样开展压裂试验;② 高压流体介质泵注压力控制范围可达40 MPa,X/Y/Z三方向最大加载压力50MPa,可容纳300 mm×300 mm×300 mm以内大尺寸试样开展试验;③ 可采用声发射信号的时域、频域、空间等多方面推演压裂裂缝扩展的隐蔽信息。利用该装置开展了胍胶水、纯水、N2、SC-CO2等4种流体介质的真三轴压裂试验,揭示了不同流体介质压裂试样过程中声发射时域−频域−空间响应规律,分析了泵注压力、破裂形态、振铃计数、频域频率和幅值、空间定位等声发射多元信息。试验结果表明:4种介质中,SC-CO2作为压裂液注入试样产生最多的次生裂缝。注入介质为液体时,声发射振铃计数只是在一定范围内波动;声发射信号主控频率主要集中在高频段(HF),占比均超过78%。而注入介质为非液态时,声发射振铃计数会在起裂压力附近出现突增,这是由于非液体介质的高压缩性在试样低渗透条件下产生憋压作用导致岩体破裂。液体介质压裂试样破坏事件的空间信息都集中在恒定稳压和致裂卸压阶段,N2压裂过程中破裂定位事件主要在缓慢增压和快速卸压阶段产生,而SC-CO2压裂则主要集中在快速卸压阶段。

     

    Abstract: Physical fracturing experiments on coal-rock masses serve as a critical validation method for theoretical models and numerical simulations while providing technical guidance for industrial applications. Current limitations persist in comparative studies of different fracturing fluids and internal fracture propagation monitoring. A multifield multiphase fracturing apparatus was developed to investigate fracture extension mechanisms under multiphase fluid injection (liquid, gaseous, supercritical) within stress-fracture-seepage coupled fields. The system comprises four key modules: high-pressure fluid injection, true triaxial hydraulic servo-loading, backpressure metering, and multi-channel data acquisition. Key features include: ① Independent fluid delivery circuits connecting guanidine gel, water, N2, and SC-CO2 to either KDHSH100 dual-cylinder precision pumps or gas boosters; ② 40 MPa maximum injection pressure, 50 MPa triaxial loading capacity (X/Y/Z directions), and 300 mm×300 mm×300 mm specimen compatibility; ③ Acoustic emission (AE) signal analysis integrating time-domain, frequency-domain, and spatial parameters for fracture characterization. Using this device, true triaxial fracturing tests were conducted with four fluid media: guar gum aqueous solution, pure water, N2, and SC-CO2. The time domain-frequency, domain-spatial domain response laws of acoustic emission during the fracturing process of different fluid media were revealed, and the multi-information of acoustic emission such as pump injection pressure, fracture morphology, ringing count, frequency and amplitude in the frequency domain, and spatial location were analyzed. The test results show that among the four media, SC-CO2 generated the highest density of secondary fractures. Liquid injection maintained stable AE ring-down counts with dominant high-frequency components ( > 78% HF content), whereas non-liquid media exhibited abrupt AE count surges near fracture initiation pressure, attributed to compressibility-induced pressure accumulation in low-permeability specimens. Spatial AE events were predominantly observed during pressure stabilization phases (liquid fracturing), gradual pressurization/rapid depressurization stages (N2 fracturing), and concentrated rapid depressurization phases (SC-CO2 fracturing).

     

/

返回文章
返回