基于YOLOv11融合结构相似性的深井钻孔内壁环状全景自适应拼接方法

An adaptive splicing method for panoramic images of deep well borehole walls based on YOLOv11 fused with structural similarity

  • 摘要: 为实现深井钻孔内壁形态的高质量全景可视化,克服传统图像拼接方法在自动化水平、拼接质量及处理效率方面的局限,本文提出了一种融合YOLOv11s(You Only Look Once)与结构相似性(Structural Similarity Index Method)的智能图像拼接方法。研究旨在突破现有技术对人工干预依赖性强、易产生接缝、亮度不均及视觉伪影等瓶颈,提升钻孔内壁图像拼接的精度、连续性与整体效率,为后续钻孔质量评估与爆破设计参数优化提供高保真、高一致性的视觉数据支持。在技术方法上,引入轻量化YOLOv11s目标检测网络,充分利用其深层特征提取能力与多尺度检测优势,精准识别钻孔图像中的圆形边界,自动提取圆心坐标与半径参数,有效克服因镜头畸变、光照不均或局部遮挡引起的定位偏差;随后,基于精确的几何参数进行极坐标变换,将环形内壁区域逐帧展开为矩形图像,保留原始纹理信息的同时构建空间有序的展开图集。在此基础上,创新性地融合SSIM结构相似性度量与滑动窗口匹配策略,通过系统分析相邻展开图像在重叠区域内的亮度、对比度与结构一致性,自适应搜索最优配准位置,实现高效、无缝的图像拼接,最终生成完整内壁环状全景图。实验结果表明,该方法在处理240张图像时,拼接耗时仅为34.98秒,同样实验条件下,相较于传统SIFT特征点匹配方法所需的271.35秒,该方法耗时更短且拼接结果具有更高的视觉连贯性与几何保真度,抑制了接缝错位、亮度跳变和纹理重复等常见问题。创新在于提出了一种自动化拼接流程,融合YOLOv11s与SSIM算法,提升了拼接效率与视觉质量。

     

    Abstract: To achieve high-quality panoramic visualization of deep wellbore interior morphology and overcome the limitations of traditional image stitching methods in terms of automation, stitching quality, and processing efficiency, an intelligent image stitching method integrating YOLOv11s and Structural Similarity Index Method is proposed. The research aims to address the challenges of high dependency on manual intervention, seam generation, uneven brightness, and visual artifacts inherent in existing technologies, thereby improving the accuracy, continuity, and overall efficiency of borehole image stitching. In terms of technical methodology, a lightweight YOLOv11s object detection network is introduced, making full use of its deep feature extraction capability and multi-scale detection advantages to accurately identify circular boundaries in borehole images. The center coordinates and radius parameters of the circles are automatically extracted, effectively overcoming positioning deviations caused by lens distortion, uneven lighting, or local occlusion. Subsequently, based on the precise geometric parameters, polar coordinate transformation is applied to unroll the circular inner wall area into rectangular images, preserving the original texture information while constructing a spatially ordered unfolding atlas. Building on this, the SSIM structural similarity measure is innovatively combined with a sliding window matching strategy. By systematically analyzing the brightness, contrast, and structural consistency of adjacent unfolded images in overlapping regions, the optimal registration position is adaptively searched, achieving efficient, seamless image stitching. This process ultimately generates a complete panoramic image of the borehole’s inner wall. Experimental results show that the proposed method takes only 34.98 seconds to stitch 240 images, significantly outperforming the traditional SIFT feature point matching method, which takes 271.35 seconds under the same experimental conditions. Additionally, the stitching results exhibit higher visual coherence and geometric fidelity, effectively suppressing common issues such as seam misalignment, brightness jumps, and texture repetition. The innovation lies in proposing an automated stitching workflow that combines YOLOv11s and SSIM algorithms to enhance stitching efficiency and visual quality.

     

/

返回文章
返回