傅雪海, 齐琦, 程鸣, 等. 煤储层渗透率测试、模拟与预测研究进展[J]. 煤炭学报, 2022, 47(6): 2369-2385. DOI: 10.13225/j.cnki.jccs.YG22.0397
引用本文: 傅雪海, 齐琦, 程鸣, 等. 煤储层渗透率测试、模拟与预测研究进展[J]. 煤炭学报, 2022, 47(6): 2369-2385. DOI: 10.13225/j.cnki.jccs.YG22.0397
FU Xuehai, QI Qi, CHENG Ming, et al. Review of research on test, simulation and prediction of coal reservoir permeability[J]. Journal of China Coal Society, 2022, 47(6): 2369-2385. DOI: 10.13225/j.cnki.jccs.YG22.0397
Citation: FU Xuehai, QI Qi, CHENG Ming, et al. Review of research on test, simulation and prediction of coal reservoir permeability[J]. Journal of China Coal Society, 2022, 47(6): 2369-2385. DOI: 10.13225/j.cnki.jccs.YG22.0397

煤储层渗透率测试、模拟与预测研究进展

Review of research on test, simulation and prediction of coal reservoir permeability

  • 摘要: 渗透率是煤层气开发的重要参数,煤储层较强的非均质性使得现场少量试井结果难以反映区域性渗透率规律,不同仪器、方法、样品尺寸、压力、温度及介质条件下获得的实验渗透率对比性也较差。对比分析了不同试井方法(钻杆测试、水罐测试、段塞测试、注入/压降测试)、不同实验测试方法(稳态法、非稳态法)的优缺点、适用条件及渗透率测试标准的演化历程,系统评述了单轴应变条件、恒定体积条件以及三轴应力条件下渗透率模拟模型的适用性,分析了基于裂隙、煤体结构、地应力、构造曲率等单一主控因素预测渗透率及人工智能(BP神经网络、灰色关联分析、支持向量回归机、多层次模糊综合评价)多因素预测的可靠性,总结了煤储层渗透率在测试、模拟和预测方面存在的问题,并提出了进一步研究的展望。研究结果表明现场注入测试是获取原位煤储层渗透率的主要方法,实验室非稳态法渗透率测试适合我国低渗煤储层;单轴应变条件下的P-M模型和S-D模型适用于恒定垂直外部应力条件下的模拟,恒定体积条件下的Ma模型对于多数煤类输入的参数均可测量,模拟结果可靠性较高,三轴应力条件下的Connell模型和Zhou模型更有利于通过实验室测定对模拟渗透率进行验证;基于煤层气井生产数据历史拟合得到的渗透率与原位煤储层更为接近,未进行煤层气排采试验区基于单一主控因素的煤储层渗透率预测效果较好,综合多因素的人工智能技术预测的渗透率较可靠。

     

    Abstract: Permeability is an important parameter for coalbed methane development.The strong heterogeneity of coal reservoirs makes it difficult for reflecting the regional permeability law by a small number of well test results.It is also hard to compare the experimental permeability data obtained under different instruments, methods, sample sizes, pressures, temperatures, and media conditions.This paper compares and analyzes the advantages and disadvantages, applicable conditions, and permeability of different well testing methods(drill stem testing, water tank testing, slug well testing, injection/fall-off testing)and different experimental testing methods(steady-state method, non-steady-state method).Based on the evolution history of permeability test standards, the applicability of permeability simulation models under uniaxial strain conditions, constant volume conditions, and triaxial stress conditions has been systematically reviewed.Also, the reliability of predicting permeability based on single main controlling factors such as fissures, coal body structure, in-situ stress and tectonic curvature and artificial intelligence multi-factor prediction(back propagation neural network, grey relational analysis, support vector regression machine, and multi-level fuzzy comprehensive evaluation)was analyzed.The study showsthe problems existed in the testing, simulation and prediction of coal reservoir permeability and puts forward the prospect of further research.The results show that the field injection test is the main method for obtaining the permeability of in-situ coal reservoirs.The laboratory unsteady-state permeability test is suitable for low permeability coal reservoirs in China.The P-M model and the S-D model under uniaxial strain conditions are suitable for the simulation of constant vertical permeability.For simulation under constant volume conditions, the Ma model can measure most coal input parameters, and the simulation results are more reliable.The Connell model and Zhou model under triaxial stress conditions are more conducive to the verification of simulated permeability by laboratory measurements.The permeability obtained based on the historical matching of coalbed methanewell production data is closer to the in-situ coal reservoir, and the prediction effect of the coal reservoir permeability based on a single main control factor is better in the area without coalbed methane test.The penetration rate predicted by artificial intelligence technology that integrates multiple factors is reliable.

     

/

返回文章
返回