基于小波散射分解变换的煤矿微震信号智能识别

樊鑫, 程建远, 王云宏, 栗升, 段建华, 王盼

樊鑫, 程建远, 王云宏, 等. 基于小波散射分解变换的煤矿微震信号智能识别[J]. 煤炭学报, 2022, 47(7): 2722-2731.
引用本文: 樊鑫, 程建远, 王云宏, 等. 基于小波散射分解变换的煤矿微震信号智能识别[J]. 煤炭学报, 2022, 47(7): 2722-2731.
FAN Xin, CHENG Jianyuan, WANG Yunhong, et al. Intelligent recognition of coal mine microseismic signal based on wavelet scattering decomposition transform[J]. Journal of China Coal Society, 2022, 47(7): 2722-2731.
Citation: FAN Xin, CHENG Jianyuan, WANG Yunhong, et al. Intelligent recognition of coal mine microseismic signal based on wavelet scattering decomposition transform[J]. Journal of China Coal Society, 2022, 47(7): 2722-2731.

基于小波散射分解变换的煤矿微震信号智能识别

Intelligent recognition of coal mine microseismic signal based on wavelet scattering decomposition transform

  • 摘要: 微震信号是一种典型的时变非平稳信号,微震监测系统在高噪声环境下采集信号的信噪比 偏低,影响了微震事件的识别准确率和精度,现有的微震事件识别方法仍然存在低速率、高时延、低 精度等问题。 以小波理论为基础,提出利用小波散射分解变换提取微震事件和噪声信号的特征,计 算 2 类信号的特征系数,并构成相应的特征矩阵;基于微震信号低频特性、不可预知性和突发瞬态 性的特点,对比分析了小波散射分解变换结构的主要参数:时不变尺度、散射分解次数和质量因子 对特征矩阵维数的影响;通过调整参数的大小有效控制特征矩阵维数,提高运算效率,最终选择出 最优的特征矩阵,利用 SVM 分类对 360 组煤矿微震信号进行分类识别。 实验结果表明:1 小波散 射系数构成的特征矩阵可以有效区分微震事件信号与噪声信号,且事件信号特征系数变化趋势具 有突变性,噪声信号特征系数变化趋势表现为无序性;2 采用 3 次小波散射分解变换构成的特征 矩阵,可有效表征微震事件信号与噪声信号的差异特征,提高程序运算效率,而随着变换次数增加, 事件信号的低频部分更明显;3 在时不变尺度和变换次数确定的情况下,为得到最优特征矩阵,各 阶小波散射变换的质量因子选择不宜过大。
    Abstract: Microseismic signal is a typical timevarying nonstationary signal,while the collected data are often disturbed by strong noise,seriously affecting the recognition efficiency of microseismic events and the accuracy of source location. Existing traditional recognition methods still have problems with a low rate,high delay and low accuracy. Therefore,based on wavelet theory,the wavelet scattering decomposition transformation method is proposed to analyze and extract the features of microseismic events and noise events signals,calculate the feature coefficients of the two signals,and form the corresponding feature matrix. Based on the characteristics of lowbandwidth,unpredictability and burst transient of microseismic signals,the effects of timeinvariant scale,the number of scattering decomposition and quality factors on the dimension of the feature matrix are compared and analyzed by processing the real data. By adjusting the size of the parameters,the dimension of the feature matrix is effectively controlled to improve the operation efficiency. Finally,the optimal feature matrix is selected for the training of the machine learning classification model. The experimental results show that the feature matrix composed of the wavelet scattering coefficients can effectively distinguish the event signals from the noise signals,and the feature coefficients change trend of the event signals is mutant,and the noise signals feature coefficients change trend appears as a disorder. The feature matrix composed of three times wavelet scattering decomposition transformation can effectively represent the different characteristics of microseismic event signals and noise signals and improve programming efficiency,and the lowfrequency part of event signal is more obvious with the number of transformations increasing. In the case where the timeinvariant scale and the number of transformations are determined,in order to obtain the optimal feature matrix,the quality factor selection of the wavelet scattering transformation of each order should not be too large.
  • 期刊类型引用(10)

    1. 苏国韶,黄京华,蒋剑青,胡小川. 浅埋隧洞塌方灾害微震实时监测与智能预警. 水力发电. 2025(01): 28-36 . 百度学术
    2. 王兵,张涛,路国强,王云宏,蒙文军. 煤矿防盗采多维微震监测预警技术在三道沟煤矿的应用. 煤炭技术. 2025(03): 160-165 . 百度学术
    3. 张宝慧,陈艳林,訾聪娜,韩伟,滕金亮. 基于信号分析技术的呼吸机工作状态自动化识别研究. 电子设计工程. 2024(01): 55-58+63 . 百度学术
    4. 董毅,杨创. 基于最优阈值参考的瞬变电磁法小波降噪效果研究. 煤矿安全. 2024(01): 185-191 . 百度学术
    5. 周荣环,康帅,王自法,靳满. 基于时频分析与深度学习的结构震后损伤评估. 地震工程学报. 2024(01): 115-125 . 百度学术
    6. 许华杰,刘冠霆,张品,秦远卓. 采用动态相关度权重的特征选择算法. 计算机工程与应用. 2024(04): 89-98 . 百度学术
    7. 樊鑫,程建远,栗升,段建华,范涛,李博凡,王艳波. 煤矿微震监测系统在回采工作面顶板水害防治中的应用. 煤田地质与勘探. 2024(06): 115-127 . 百度学术
    8. 闫昭阳,朱景宝,刘赫奕,宋晋东,李山有. CEEMDAN-LSTM框架下的天然地震与矿震区分技术研究. 煤炭学报. 2024(S2): 731-745 . 本站查看
    9. 曹现刚,段雍,赵江滨,杨鑫,赵福媛,樊红卫. 综采设备健康状态评估研究综述. 工矿自动化. 2023(09): 23-35+97 . 百度学术
    10. 卢绪祥,刘顺顺,陈向民,张亢. 基于声发射及WST-CNN协同的滑动轴承润滑状态识别. 振动与冲击. 2023(22): 71-77+229 . 百度学术

    其他类型引用(7)

计量
  • 文章访问数:  71
  • HTML全文浏览量:  5
  • PDF下载量:  486
  • 被引次数: 17
出版历程
  • 网络出版日期:  2023-04-09

目录

    /

    返回文章
    返回
    x 关闭 永久关闭