煤矿安全网中基于已知样本的快速聚类入侵检测算法

  • 摘要: 针对煤矿安全生产信息系统中出现的网络入侵问题,在网络入侵异常检测技术中提出一种基于已知样本的快速聚类入侵检测算法.该算法通过对已知样本训练来准确获得初始聚类中心,同时运用对象分离的方法计算聚类中心和非相似度,解决了由于传统聚类算法随机选取初始聚类中心和只能计算单一连续属性或离散属性带来的网络异常检测中误报率高而检测率低的问题.实例验证表明:该算法比传统聚类算法的检测率提高了30%,误报率降低了25%,并且能获得对新型攻击的检测.

     

/

返回文章
返回