纤维素基柔性电致变色器件研究进展及展望

刘鼎盛, 焦月, 梅长彤, 肖慧宁, 李坚

刘鼎盛,焦月,梅长彤,等. 纤维素基柔性电致变色器件研究进展及展望[J]. 煤炭学报,2023,48(6):2249−2260.
引用本文: 刘鼎盛,焦月,梅长彤,等. 纤维素基柔性电致变色器件研究进展及展望[J]. 煤炭学报,2023,48(6):2249−2260.
LIU Dingsheng,JIAO Yue,MEI Changtong,et al. Progress and prospect of flexible electrochromic devices based on cellulose[J]. Journal of China Coal Society,2023,48(6):2249−2260.
Citation: LIU Dingsheng,JIAO Yue,MEI Changtong,et al. Progress and prospect of flexible electrochromic devices based on cellulose[J]. Journal of China Coal Society,2023,48(6):2249−2260.

纤维素基柔性电致变色器件研究进展及展望

基金项目: 国家自然科学基金资助项目(32201487);江苏省自然科学基金资助项目(BK20210621);江苏省高等学校自然科学基金资助项目(21KJB220010)
详细信息
    作者简介:

    刘鼎盛(1998—),男,广西贵港人,硕士研究生。E-mail:1499739476@qq.com

    通讯作者:

    焦 月(1993—),女,黑龙江大庆人,讲师,硕士生导师。 E-mail:yjiao123@126.com

  • 中图分类号: TB34

Progress and prospect of flexible electrochromic devices based on cellulose

  • 摘要:

    电致变色技术是一门极具潜力的应用科学,正逐渐引起学术界和工业界的深度关注。主要从电致变色器件(Electrochromic Devices,ECD)的工作原理、器件结构、材料应用等方面进行介绍和总结。新兴的柔性ECD其具有质量轻、灵活、便携等优点在智能穿戴和柔性电子产品中的应用更为广泛。然而柔性ECD在生产应用中仍存在一些缺陷亟待解决:① 常规的玻璃基底制备出的刚性电致变色器件柔性不足、原材料稀缺且不可再生;② 传统的液态电解质在使用过程中易泄露、腐蚀、蒸发,严重影响器件的安全性及使用寿命;③ 电致变色层电化学稳定性较差,影响器件使用寿命。从结构和性质方面讨论了纤维素材料用作ECD柔性基底、电解质、电致变色层的应用和优势。纤维素材料具有优异的光学、力学性能,以其作为ECD器件的基底可规避常规玻璃基底柔性不足、原材料稀缺等缺陷;在电解质层中合理引入纤维素,其三维网络结构及主干上的官能团可通过形成离子键、氢键的方式提高电解质的机械性能与导电性能;在电致变色层中合理引入纤维素,纤维素的三维网状结构能为材料发生氧化还原反应提供更大的比表面积及缓解电子/离子嵌入、脱出过程引起的体积膨胀,有助于改善电致变色材料的电化学稳定性,延长器件的使用寿命。纤维素基柔性ECD在节能建筑、显示设备及储能设备等领域具有广阔的应用前景,在柔性电子器件引入纤维素对扩展其应用范围和提升利用价值具有重要意义。

    Abstract:

    Electrochromic technology is a potential applied science, which is gradually attracting the deep attention of academia and industry. In this paper, the working principle, device structure and material application of electrochromic devices (Electrochromic Devices,ECD) are introduced and summarized. The emerging flexible ECD has the advantages of light weight, flexibility and portability, which is more widely used in smart wear and flexible electronic products. However, there are still some defects to be solved in the production and application of flexible ECD: ① The rigid electrochromic devices which prepared on conventional glass substrates are not flexible enough, the raw materials are scarce and non-renewable; ② The traditional liquid electrolytes are easy to leak, corrode and evaporate, which seriously affect the safety and service life of the devices; ③ The electrochemical stability of the electrochromic layer is poor, affecting the service life of the devices.The applications and advantages of cellulose as flexible substrate, electrolyte and electrochromic layer of ECD are discussed in terms of structure and properties. Cellulose material has excellent optical and mechanical properties, which can avoid the defects such as the insufficient flexibility of conventional glass substrate and the scarcity of raw materials when cellulose is used as the substrate of ECD devices, and the three-dimensional network structure and functional groups on the backbone of cellulose can improve the mechanical properties and electrical conductivity of electrolytes by forming ion bonds and hydrogen bonds. With the reasonable introduction of cellulose into the electrochromic layer, the three-dimensional reticular structure of cellulose can provide a larger specific surface area for redox reaction and alleviate the volume expansion caused by electron/ion intercalation and exfoliation process. It is helpful to improve the electrochemical stability of electrochromic materials and prolong the service life of the devices. Cellulose-based flexible ECD have a broad application prospect in the fields of energy-saving buildings, display equipment and energy storage devices. The introduction of cellulose into flexible electronic devices is of great significance to expand its scope of application and enhance its utilization value, and at the same time promote the development of green and environment-friendly intelligent flexible electronic devices.

  • 随着智能电子器件的发展,器件的功能愈发多样化,可视化作为新兴发展方向之一,满足对电容实时监控的需要,受到越来越多的关注。电致变色是材料在特定电压下发生颜色可逆变化的现象,其原理是可逆的氧化还原反应改变了材料对光的吸收率,在宏观层面上表现为颜色变化。电致变色材料20世纪60年代由Pallt发现继而被广泛关注,1969年DEB[1]发现由WO3制成的膜存在电致变色能力并提出氧空位理论,随后在20世纪70年代出现了大量关于电致变色机理以及电致变色显示器、电致变色电池、电致变色玻璃等电致变色器件(Electrochromic Devices,ECD)的应用报道[2-4]。电致变色技术是一门极具潜力的应用科学,其在节能建筑的智能窗户、信息显示等方面具有广阔的应用前景[5],如在智能窗应用中,当施加电场时,这些窗户可动态控制建筑物的光热输入,响应内部温度和照明条件的变化从而达到节能的功效。但在商业化过程中,常用的氧化铟锡(Indium Tin Oxides,ITO)基透明电极通常附加于玻璃等刚性基材上,限制了其在可穿戴设备、医学领域(例如电子皮肤、心电诊断等)等方面的应用[6]

    与常见的导电玻璃(如ITO、掺氟氧化铟锡)基ECD相比,新兴的柔性ECD其具有质量轻、灵活、便携等优点,在智能穿戴和柔性电子产品中的应用更为广泛。因此寻找可替代导电玻璃的新型柔性基底材料对ECD具有重要意义。除了上述基底外,制备具有良好的光电性能、高导电性、优异机械性能和高电化学响应的ECD组分,如电解质、电极等,对柔性ECD的构建同样具有重要意义。

    壳聚糖、纤维素等天然生物聚合物,具有易修饰、良好的吸附性与成膜性等优异的物理和化学性能,且储量分布、成本低廉,有望应用于柔性传感器和便携式储能系统[7-10]。其中纤维素作为地球上储量最大的天然高分子材料,木材、棉花、秸秆等均可作为提取纤维素的原材料[11],具备抗拉伸弯曲甚至折叠等变形的强耐磨性、较大的比面积、优异的生物可降解性、独特的化学性质、易于加工等特性,有望解决ECD现常用基底成本昂贵且在回收性、机械性能方面存在的问题。将纤维素应用于柔性基底、电解质乃至电极的构建,可推动柔性ECD的进一步发展,加快ECD的普及与应用。

    将纤维素引入到ECD中可显著改善器件的性能及扩展应用范围,但目前鲜见纤维素结构与性能角度系统讨论其在ECD器件中原理及作用的相关研究。为此,笔者主要归纳和讨论了纤维素材料参与构建电致变色储能器件柔性基底、电解质及复合电极的研究和优势,并提出基于纤维素的智能ECD所面临的科学技术挑战以及未来的发展方向。

    纤维素由线性β−1,4糖苷键连接的D−葡萄糖单元组成,并具有丰富的活性基团(—OH),可在聚合物链之间形成氢键,从而构建出氢键网络将聚合物链连接成带状[12](图1)。因纤维素聚合物独特的网络结构使其相对稳定,从而具有柔性、低热膨胀系数等优点[13],可应用于ECD、超级电容器等电子设备中,除纤维素本身具有柔性外,其所含丰富活性基团易与活性材料之间产生新的氢键,也增强器件的柔性与材料性能。JIAO等[14]将纤维素、MXene与纳米金刚石3者复合制备出柔性复合膜,其柔性来源于纤维素与MXene之间产生的强分子间氢键。SU等[15]制备的透明导电纤维素复合膜由聚多巴胺纤维素、银纳米线组成,纤维素与银纳米线之间形成的氢键极大增强了复合膜的机械强度与柔性,优于纯纤维素膜与纯聚多巴胺纤维素膜。PAKHARENKO等[16]将纳米纤维素(Nanocellulose,NC)制成薄膜,以其为基底制备的发光器件具有良好的热稳定性,在190 ℃下暴露长达5 h仍不被氧化,该柔性基板独特的耐用性在柔性照明、能源和传感设备中具有潜在的应用。纤维素应用于储能设备中时可为器件提供多孔交联网络结构,从而增加单位面积上活性材料的负载量,提高器件的机械柔性[17]。KIM等[18]将银纳米线沉积并固定在纤维素基板上,经高温高压制得透射率高于80%、雾度低于8%的柔性膜电极。BHARTI等[19]以细菌纤维素材料组装出的掺硫柔性电极,利用纤维素的三维结构实现了对硫的高负载量,达5 mg/cm2。近年来,材料和器件研究趋于智能化的发展方向,亦推动着纤维素向储能器件、传感器等新领域的发展[20-22]

    图  1  纤维素的层次结构和纤维素纤维中结晶和无定形区域示意[23]
    Figure  1.  Hierarchical structure of cellulose and schematic illustration of crystalline and amorphous regions in cellulose fiber[23]

    纤维素材料良好的可加工性使其适合用于制备柔性电子器件[24]。通过系统地对纤维素的结构进行设计,控制其表面/界面化学基团,已成功复合出各种功能性纤维素材料[25]。纤维素基复合材料通常具有分层孔隙结构(利于电荷储存及移动)、亲水表面和吸附能力(有利于电解质的吸收和传输)[26]。虽然纤维素本身为绝缘材料,但其多羟基结构可对电解质的离子起到良好的传导效果,提高器件内部离子的传输效率,进而提升器件的循环稳定性。CHENG等[27]利用羧甲基纤维素钠制备导电水凝胶并组装出全固态柔性超级电容器,经1 000次充放电循环后,器件的比电容保留率保持在初始值的82%,其良好的循环稳定性来源于离子嵌入/脱出过程中,水凝胶中纤维素提供的稳定传导通路。EL等[28]采用薄纤维素气凝胶作为隔膜,构建连续的通道促进电解质渗透和离子转移,有效降低了转移过程中的电解质界面效应。纤维素表面丰富的活性官能团使其可作为良好的分散剂,对活性材料在电极表面的分散有积极效果。JI等[29]将羧甲基纤维素钠作为分散剂和黏结剂制备氧化石墨烯及炭黑,成功印刷出连续、均匀、密集的导电网络。除作为分散剂外,丰富的表面基团也使纤维素可作为基底与导电物质之间的黏结剂。LI等[30]将银纳米线网络嵌入透明羟丙基甲基纤维素膜中(图2(a)),根据2者的黏附性提升推测银纳米线与羟丙基甲基纤维素之间存在新的作用力(图2(b)、(c)),提高了银纳米线与基底之间的黏附性。纤维素本身具有透光性,实验获得的柔性ECD展现出良好的循环稳定性(图2(d))、显著的着色−漂白变化(图2(e))。在纤维素制备的复合材料中,纤维素表面活性官能团对导电物质进行分散的同时,网络结构作为支撑可提供良好的柔性与机械稳定性。SONG等[31]将NC和羟丙基甲基纤维素(Hydroxypropyl Methylcellulose,HPMC)交联,与银纳米线(银纳米线)组装制备出具有极强的黏附性和机械柔韧性的导电纸,体现了纤维素赋予电子器件良好的柔性及使用寿命。

    图  2  一种以纤维素为基底的柔性ECD制备过程、性能及纤维素在其内部的作用原理
    Figure  2.  Preparation process and properties of a flexible ECD based on cellulose and the principle diagram of the action of cellulose in it

    随着先进的制备、加工和表征技术逐渐研发,纤维素材料具有的良好的可加工性、优异的力学、光学性能将在下一代柔性、可穿戴的智能设备中展现出更高的利用价值。

    ECD因其在柔性电子领域的潜力而受到越来越多的关注[32-34],目前其已被广泛应用于传感器、智能窗、伪装涂料、防眩后视镜、显示器等[35-37](图3(a)~(c))。ECD通常为“三明治夹层结构”(图3(d)),由透明导电层、电致变色层、电解质层及离子储存层组成。ECD的工作过程为可逆的氧化还原反应,分着色和脱色2个过程。着色时,外加电场通过透明导电层作用于器件,离子(电子)经过电解质层的传输到达电致变色层,将电致变色层氧化或还原,从而使器件整体的光学性质发生改变;脱色时,电致变色层在外加电场的作用下,内部的离子(电子)脱出,经过电解质层运输后到达离子储存层,实现光学性质的还原[38]。ECD之所以难以实现柔性,主要原因在于其本身为分层结构,各层之间的结合较差导致ECD在弯曲、折叠时,各层之间易发生错位与分离,进而导致器件整体的损坏[39]。与传统的玻璃基材ECD相比,复合材料基底组成的柔性ECD不仅易于加工,更兼具良好的物理和化学性质,便于集成到所需的电子元件中,扩大电致变色的应用[40],如电致变色超级电容器(电致变色与超级电容器的结合),将ECD与储能器件集成于一个系统中,有望克服ECD对外部电源的依赖和传统ECD的应用范围有限等问题,在可穿戴设备领域有广阔的发展前景[41]

    图  3  常见 ECD的工作原理、结构及应用
    Figure  3.  Working principle, structure and application of common ECD

    透明导电层是制备柔性ECD过程中不可忽视的关键问题。对于柔性ECD来说,理想的柔性透明基底应具有较高的光学透明度、良好的化学耐久性以及机械柔韧性,具备上述条件时器件才有在弯曲、扭曲和拉伸状态下保持电致变色特性的可能。在柔性ECD研究中,聚乙烯、聚对苯二甲酸乙二醇酯等石油基高聚物常用来制备ECD的透明导电层,但上述聚合物材料普遍存在热稳定性差、力学性能不佳等缺陷[42]。而石墨烯、碳纳米管等碳材料基电极及基于纤维素的复合材料电极在力学、电学性能方面表现更为优异,在后续研究中有望替代石油基聚合物作为透明导电层的制备材料。

    电致变色层是ECD的核心,由电致变色材料组成,通常具有离子或电子电导率高、着色态和漂白态的光学对比度大等优点,在可逆电化学氧化还原过程的光学调制中起主要作用 [43]。无机电致变色材料(普鲁士蓝、硫化钨等)存在颜色变化单一、工艺复杂、成本高昂等问题,有机电致变色材料如聚(3,4−乙烯二氧噻吩):聚(苯乙烯磺酸盐)[Poly(3,4−ethylenedioxythiophene)/Poly(styrene sulfonate),PEDOT:PSS]、聚苯胺(Polyaniline,PANI)、聚吡咯等在电致变色层中的应用更为广泛[44]

    在ECD中,电解质层位于2个电致变色电极之间,以避免电极之间接触,并为电致变色的氧化还原过程提供如H+、Li+等。ECD中电解质的选择对器件的品质影响重大,如着色效率、开关时间等指标均与电解质层的选择密切相关[45-47]。因此,在制备ECD时,通常要求电解质层具有高离子电导率和低电子电导率[48],一方面,较高的离子电导率可为器件提供良好的动力学特性;另一方面,较低的电子电导率可减少器件在循环过程中的泄漏电流[49-50]

    基于ECD器件应用存在的问题及纤维素材料在柔性电子领域呈现的优势,其既可作为器件的可再生基底及固态电解质掺杂增强材料,提高柔性器件的导电性和机械性能[51],也可作为电致变色层与基底之间良好的黏合介质,为电致变色应用的工业化提供助力,并极大拓宽了电致变色材料的应用领域。

    在建筑领域,电致变色窗户以低驱动电压改变对光线透过率的优点进一步降低了光线辐射能量对室内温度的影响,减少在调温方面的能源损耗(图4(a)、(b))[52-53]。纤维素作为基底具有良好的尺寸稳定性、低热膨胀系数等优点,应用于电致变色窗户中,既保证了器件优异的材料性能,也延长了器件的使用寿命。

    图  4  ECD在电致变色窗方面的工作示意图、制备过程与性能
    Figure  4.  Schematic diagram, preparation process and properties of ECD in electrochromic windows.

    目前柔性ECD的制备通常以石油衍生高聚物为基底,EREN等[54]在聚对苯二甲酸乙二醇酯纤维网上通过磁控溅射工艺附加V2O5膜,以此制备ECD,石油衍生高聚物具有一定的柔韧性和透明性,但其存在难降解、可加工温度低、热膨胀系数高等缺陷。纤维素应用在ECD中最直接的体现在作为基底时能有效降低器件成本及其易降解所减少的环境负担,PIETSCH等[55]用醋酸纤维素作为基底,PEDOT:PSS作为电致变色层制备电致变色显示器,该器件具备良好的柔性与可再生性,经过10 000次弯曲实验后光学对比度仅减少15.9%,并在模拟自然环境中降解率达79.1%。SUN等[56]制备V2O5−甲基纤维素复合膜,甲基纤维素在组合成膜过程中同样表现出良好的韧性和柔韧性(图4(c))。图4(d)、(e))中V、C、O均匀分布在棒状结构中形成致密的结构,为五氧化二钒的层结构提供支撑,纤维素限制了离子嵌入引起的体积膨胀,从而使复合薄膜具有良好的循环稳定性。LANG等[57]脱除木材中的绝大部分半纤维素与木质素,仅保留纤维素作为电致变色电极基底,其表面涂覆改性PEDOT:PSS制备电致变色电极(图4(f))。图4(g)表现出透明木材基底优异的材料性能,在电致变色性能测试中,该法所制备出的电致变色电极表现出高光学对比度(图4(h))。

    纤维素作为生物质基复合材料具有良好的可再生性与丰度,以及优异的柔韧性、超高的透光性及较强的机械强度,在未来研究中有望逐步替代目前ECD中导电玻璃与石油基聚合物等常规基底,缓解常规基底所带来的环境污染问题,为绿色柔性ECD的广泛应用提供必要的基础[58]

    电解质层作为ECD器件的主要构成部分,在ECD及所有电化学装置中,电解质都被视为分隔阴极和阳极的核心部分并作为电荷传输的媒介。ECD在缺乏液体介质的情况下离子电导率较低,是柔性可穿戴显示设备应用难以推广的原因之一。对于柔性ECD来说,纤维素除在基底方面展现柔性,其丰富的孔隙结构更易附加导电物质。传统的LiClO4等常规液态电解质在制备柔性ECD如电子显示器时,经多次机械变形、电化学循环后易发生泄漏等现象,器件寿命短且危险性大,而纤维素等高聚物参与构建凝胶电解质时可利用其三维网络结构,通过主干上官能团的极性或离子键在结构的空隙中容纳大量的水[59],将水电解质的特性(离子导电性和界面接触)与聚合物的机械性能结合在一起,同时解决了水电解质泄漏和快速蒸发等风险。

    纤维素通常作为基质参与电解质的组装,通过纤维素链上的官能团可有效吸引和促进框架内的导电离子,有助于离子/电子在电解质内部的转移。NGAMAROONCHOTE等[60]利用醋酸纤维素作为基质制备凝胶电解质,在醋酸纤维素的网络框架中, Li+的配位与解离过程得到改善,组装制备的电致变色显示器能完成超过1 000次的可逆变色循环,表现出良好的循环稳定性。GOMEZ等[61]在羧甲基纤维素基质下,用羟乙基纤维素与二乙烯基砜发生交联反应,形成半互穿网络结构制备成以纤维素基水凝胶。被吸附在三维网络结构中的羧甲基纤维素提供了极性,提高了凝胶的保水能力,材料的电导性大大增强,达3 mS/cm;另一方面交联出的线性聚合物能形成凝胶提供机械性能,基于纤维素本身的透光性,该凝胶电解质具有良好的透过率,从而进一步组装成的电致变色器件表现出55.8%的高光学对比度及优异的响应时间(11 s),具有制备电致变色显示器的潜力。LIM等[62]于甲基纤维素的骨架上掺锂磺化(图5(a),j为电流密度),基于纤维素良好的光学透明度与机械稳定性进一步构建出凝胶态透明电解质并组装出ECD,制备的电解质在极端弯曲情况下仍保持1 mS/cm以上的高电导率。

    图  5  基于纤维素电解质制备ECD的过程示意、实物展示
    Figure  5.  Process diagram and physical display diagram of preparing ECD based on cellulose electrolyte

    除凝胶电解质外,在溶剂量更低的固态电解质中,纤维素同样表现出不俗的应用性能。纤维素的机械稳定性可为电解质整体提供良好的机械稳定性,而纤维素上的活性官能团具有良好的化学修饰空间的同时,也易与导电离子形成氢键,从而增加体系内的自由离子浓度,提高离子电导率。JEONG等[63] 基于改性纤维素所制备的固态电解质制备出全固态ECD,得益于羟丙基甲基纤维素的极性,该固态电解质体现出优异的机械稳定性,在常温常压下便可组装出固态ECD并具有良好的柔性及电荷转移密度(21 mC/cm2)。DUARTE等[64]开发出一种全纤维素基固态电解质,并使用这种纤维素基电解质构建出固态ECD,该ECD兼具高反射率和显著的变色效果(图5(b)),该电解质具有6.5 mS/cm的高离子电导率,与液体电解质性能相当。

    电致变色层是ECD智能显示工作状态的关键。常见的电致变色材料如过渡金属氧化物(V、Mo)[65-67]、电致变色聚合物(PEDOT:PSS、聚吡咯)[68-69]在工作过程中也表现出一定的电容特性[70]。电致变色聚合物的变色机理常通过改变分子构型达到变色目的, ECD与超级电容器中的赝电容器从器件结构、电极材料、工作原理等方面均有相似之处[65-66](图6)。目前超级电容器在航空、汽车、智能设备领域均应用普遍,将电致变色与超级电容器相结合,超级电容器的电量可通过颜色变化被实时监测,将ECD与储能器件集成于一个系统中,不仅为ECD提供更多新的应用途径,也带来了更高的成本效益。然而,为ECD提供储能与变色机能的电致变色层仍存在2个方面缺陷:① 缺乏大规模、高质量的制备途径;② 电化学稳定性差导致器件寿命短。

    图  6  超级电容器类型及一种柔性ECD的结构
    Figure  6.  Schematic representation of supercapacitor types and structure of an ECD

    电致变色油墨在丝网印刷技术下可大规模制备高质量、低成本的电致变色层,简便、快速地组装电致变色电极,具有大规模生产ECD储能器件的潜力。纤维素作为一种良好的分散剂、黏结剂,在电致变色油墨中可通过氢键连接,增强油墨与基底的结合;也可通过与油墨之间的相互作用力与三维网络结构,令油墨在水中得到更好地分散,协同作用下降低油墨的内阻,从而提高其储能和电致变色性能。SAY等[71]将PEDOT-PSS与纤维素纳米纤丝(Cellulose Nanofibril,CNF)复合制备喷涂电致变色油墨并印刷出电致变色电极(图7(a)),电容达9.1 mF/cm2,NC为电子产生导电路径,为离子渗透提供高度多孔的网络,并通过氢键对油墨整体进行良好的分散,在工作过程中提高了油墨的机械稳定性。BROOKE等[72]开发出一种用于印刷电子元件的炭黑/NC油墨,可应用于柔性ECD储能器件的印刷制备中,器件的平均电容达97.4 mF/cm2。油墨中添加纤维素后,其三维结构对油墨的支撑、对油墨颗粒的吸引作用,令油墨颗粒依附于纤维素网络得到良好的分散,从而使该器件电容得到提升。LANG等[73]利用CNF制备柔性电致变色电极,利用其良好的分散性与孔隙结构分散导电物质,涂层的电阻比对照组降低1 000倍。

    图  7  纸电极和超级电容器制造路线及NC/POANI膜电极的制备工艺
    Figure  7.  Schematic illustration of the paper electrode and supercapacitor fabrication route and preparation process of NC/POANI film electrode

    除缺乏大规模、高质量的电极制造方法外,在高偏置电压和电化学循环下不稳定的缺陷限制了ECD储能器件的工业化应用[74]。如PEDOT经过上述测试,电致变色性能与电化学性能迅速下降[75]。通过纤维素及其衍生物丰富的官能团交联导电聚合物链[76],即纤维素可作为PEDOT低聚物的组装模板,以此构建出的复合薄膜可形成连续、均匀的导电网络[77]。纤维素参与构建的电致变色层,除柔韧及光学透明度方面的优点外,还可形成微观尺度上的网络支撑结构,使复合制备出的电致变色层尺寸稳定性、比表面积等材料性能得到提升[78]。ZHANG等[79]通过在纳米纤维悬浮液中原位聚合制备了不同PANI含量(20%~80%)的NC/PANI纳米复合材料,与纯PANI薄膜相比,NC/PANI纳米复合薄膜具有更好的成膜性能和更良好的电化学稳定性(1 000次循环后光学对比度衰减仅为4.3%)。复合材料中合理添加纤维素能为该材料提供更大的比表面积,有助于改善器件的电化学性能与电致变色性能。REN等[80]制备了核/壳结构的NC/聚邻甲氧基苯胺(POANI)电致变色膜,如图7(b)所示,该膜制备工艺流程体现了NC与POANI间的相互作用关系;与纯POANI薄膜相比,含有40% NC的纳米复合材料薄膜表现出更好的循环稳定性(在500次循环测试后仍保持其初始光学对比度的84%)。

    纤维素作为地球上最丰富的可再生资源,若能够将其应用于电子产品中制备出性能优异的器件,将对电子设备领域的可持续发展与成本节约等方面大有裨益。本文主要从ECD的原理、结构、材料等方面进行介绍和总结,并从纤维素的结构与性质出发,分析归纳了其在ECD中的主要作用。

    (1)传统的ECD基底为有机玻璃与石油基聚合物两大类,前者导电性优异但存在机械性能较差、成本高昂、不可再生等缺点,而后者则有热稳定性差、力学性能不佳等缺陷。纤维素基复合材料具有较好的机械性能与高强重比,良好的孔隙率、机械稳定性和良好的循环稳定性、可再生、可自然降解等优势使其存在替代传统基底的可能。纤维素表面丰富的基团有利于在复合材料中形成较强的氢键,提高复合材料的柔性、机械稳定性与循环寿命。在ECD中,纤维素复合材料作为基底可增强基底与电致变色层之间的黏附性,从而有效减少ECD分层结构发生各层之间错位与分离的可能。

    (2)纤维素参与构建的凝胶、固态电解质应用于柔性ECD的组装,可有效规避目前ECD常用液态电解质存在的蒸发、泄漏、腐蚀等安全性、稳定性问题,且纤维素的机械稳定性、极性、可加工性,使其在凝胶、固态电解质中表现出吸附水与有机溶剂、提供稳定力学支撑、构建电子传输路径等能力。

    (3)在电致变色层中合理添加纤维素不仅易构建出利于电化学反应的离子通道,进而协助离子在材料中扩散,纤维素的三维网状结构更是能为材料发生氧化还原反应提供更大的比表面积及起到缓解电子/离子嵌入、脱出过程引起的体积膨胀,有助于提高器件的电化学性能与电致变色性能。在印刷电极领域,既能利用纤维素官能团之间的张力解决活性组分的沉降、表面能不匹配和润湿性差等油墨优化中需要克服的常见问题,也能利用其丰富的官能团之间的作用力充当导电油墨与基底之间的黏结剂。以纤维素为介质,可尝试将更多材料性能优异的绝缘基底材料应用于电子器件中,从而扩大电子器件材料的选择范围。

    (1)目前用于ECD制备的纤维素材料多为纳米纤维素,制备成本较为高昂,制备过程中容易发生自团聚,不利于ECD的大规模制备,在后续研究中仍期望能研究出高效、廉价、环保的纳米纤维素制备方法。

    (2)纤维素基ECD在性能指标,如开关时间、光学对比度、使用寿命方面与传统刚性ECD仍存在差距,在扩展纤维素基ECD的颜色种类、提高纤维素复合材料的电导率、优化ECD器件的电荷转移以提高器件开关时间、以更低的电压驱动器件氧化还原等方面存在探索的空间。

    (3)由于ECD材料的分层结构易在拉伸、弯折中发生错位,可拉伸、柔性、可变形、自我修复和低成本的ECD在实际应用方面仍有待深入研究,改进传统的ECD三明治结构以适应智能化、可穿戴设备的发展需求是改善器件结构性能的关键因素。

    (4)大多数柔性ECD的研究与制备都局限在实验室水平,并未实现由实验室到工厂的产业化转变,在后续仍需探索出大规模、低成本的柔性ECD制备方法。

  • 图  1   纤维素的层次结构和纤维素纤维中结晶和无定形区域示意[23]

    Figure  1.   Hierarchical structure of cellulose and schematic illustration of crystalline and amorphous regions in cellulose fiber[23]

    图  2   一种以纤维素为基底的柔性ECD制备过程、性能及纤维素在其内部的作用原理

    Figure  2.   Preparation process and properties of a flexible ECD based on cellulose and the principle diagram of the action of cellulose in it

    图  3   常见 ECD的工作原理、结构及应用

    Figure  3.   Working principle, structure and application of common ECD

    图  4   ECD在电致变色窗方面的工作示意图、制备过程与性能

    Figure  4.   Schematic diagram, preparation process and properties of ECD in electrochromic windows.

    图  5   基于纤维素电解质制备ECD的过程示意、实物展示

    Figure  5.   Process diagram and physical display diagram of preparing ECD based on cellulose electrolyte

    图  6   超级电容器类型及一种柔性ECD的结构

    Figure  6.   Schematic representation of supercapacitor types and structure of an ECD

    图  7   纸电极和超级电容器制造路线及NC/POANI膜电极的制备工艺

    Figure  7.   Schematic illustration of the paper electrode and supercapacitor fabrication route and preparation process of NC/POANI film electrode

  • [1]

    DEB S K. Optical and photoelectric properties and colour centres in thin films of tungsten oxide[J]. Philosophical Magazine,2006,27(4):801−822.

    [2]

    TAKAHASHI T, TANASE S, YAMAMOTO O. An electrochromic cell using a solid proton conductor[J]. Journal of Applied Electrochemistry,1980,10(3):415−416. doi: 10.1007/BF00617218

    [3]

    SHIZUKUISHI M, SHIMIZU I, INOUE E. Solid-state electrochromic device consisting of amorphous WO3 and various thin oxide layers[J]. Japanese Journal of Applied Physics,1980,19(11):2121. doi: 10.1143/JJAP.19.2121

    [4]

    MURAO K, SATO M, SHITO N. Electrochromic cells using some transition metal complexes[J]. Japanese Journal of Applied Physics,1977,16(S1):329. doi: 10.7567/JJAPS.16S1.329

    [5]

    WIBOWO A F, HAN J W, KIM J H, et al. Multiple functionalities of highly conductive and flexible photo- and thermal-responsive colorimetric cellulose films[J]. Materials Research Letters,2022,10(1):36−44. doi: 10.1080/21663831.2021.2013330

    [6]

    JIAO X, LI G, YUAN Z, et al. High-performance flexible electrochromic supercapacitor with a capability of quantitative visualization of its energy storage status through electrochromic contrast[J]. ACS Applied Energy Materials,2021,4(12):14155−14168. doi: 10.1021/acsaem.1c02927

    [7]

    WANG M, LI R, CHEN G, et al. Highly Stretchable, transparent, and conductive wood fabricated by in situ photopolymerization with polymerizable deep eutectic solvents[J]. ACS Appl Mater Interfaces,2019,11(15):14313−14321. doi: 10.1021/acsami.9b00728

    [8]

    LIU L, ZHU G, CHEN Y, et al. Switchable photochromic transparent wood as smart packaging materials[J]. Industrial Crops and Products,2022,184:115050. doi: 10.1016/j.indcrop.2022.115050

    [9]

    ADAM A A, OJUR DENNIS J, AL-HADEETHI Y, et al. State of the art and new directions on electrospun lignin/cellulose nanofibers for supercapacitor application: A systematic literature review[J]. Polymers (Basel),2020,12(12):2884. doi: 10.3390/polym12122884

    [10]

    AN Y, YANG Y, HU Z, et al. High-performance symmetric supercapacitors based on carbon nanosheets framework with graphene hydrogel architecture derived from cellulose acetate[J]. Journal of Power Sources,2017,337:45−53. doi: 10.1016/j.jpowsour.2016.10.112

    [11]

    MOOHAN J, STEWART S A, ESPINOSA E, et al. Cellulose nanofibers and other biopolymers for biomedical applications: A review[J]. Applied Sciences,2019,10(1):119−128. doi: 10.3390/app10010119

    [12]

    ZHANG Q, ZHANG L, WU W, et al. Methods and applications of nanocellulose loaded with inorganic nanomaterials: A review[J]. Carbohydr Polym,2020,229:115454. doi: 10.1016/j.carbpol.2019.115454

    [13]

    BISWAS S K, SANO H, SHAMS M I, et al. Three-dimensional-moldable nanofiber-reinforced transparent composites with a hierarchically self-assembled “reverse” nacre-like architecture[J]. ACS Appl Mater Interfaces,2017,9:30177−30184. doi: 10.1021/acsami.7b09390

    [14]

    JIAO E, WU K, LIU Y, et al. Nacre-like robust cellulose nanofibers/MXene films with high thermal conductivity and improved electrical insulation by nanodiamond[J]. Journal of Materials Science,2022,57(4):2584−2596. doi: 10.1007/s10853-021-06676-6

    [15]

    SU Y, ZHAO Y, ZHANG H, et al. Polydopamine functionalized transparent conductive cellulose nanopaper with long-term durability[J]. Journal of Materials Chemistry C,2017,5(3):573−581. doi: 10.1039/C6TC04928A

    [16]

    PAKHARENKO V, SAMENI J, KONAR S, et al. Cellulose nanofiber thin-films as transparent and durable flexible substrates for electronic devices[J]. Materials & Design,2021,197:109274.

    [17]

    XU T, DU H, LIU H, et al. Advanced nanocellulose-based composites for flexible functional energy storage devices[J]. Advanced Materials,2021,33(48):2101368. doi: 10.1002/adma.202101368

    [18]

    KIM Y, SONG Y, KIM H. Preparation of eco-friendly transparent electrode for flexible device using cellulose substrate[J]. Fibers and Polymers,2019,20:466−471. doi: 10.1007/s12221-019-1038-7

    [19]

    BHARTI V K, PATHAK A D, SHARMA C S, et al. Flexible and free-standing bacterial cellulose derived cathode host and separator for lithium-sulfur batteries[J]. Carbohydrate Polymers,2022,293:119731. doi: 10.1016/j.carbpol.2022.119731

    [20]

    NAKAMURA C, YAMAMOTO T, MANABE K, et al. Thermoresponsive, freezing-resistant smart windows with adjustable transition temperature made from hydroxypropyl cellulose and glycerol[J]. Industrial & Engineering Chemistry Research,2019,58(16):6424−6428.

    [21]

    ORELMA H, HOKKANEN A, LEPPÄNEN I, et al. Optical cellulose fiber made from regenerated cellulose and cellulose acetate for water sensor applications[J]. Cellulose,2020,27(3):1543−1553. doi: 10.1007/s10570-019-02882-3

    [22]

    JUNG M, KIM K, KIM B, et al. Vertically stacked nanocellulose tactile sensor[J]. Nanoscale,2017,9(44):17212−17219. doi: 10.1039/C7NR03685J

    [23]

    DIAS O A T, KONAR S, LEÃO A L, et al. Current state of applications of nanocellulose in flexible energy and electronic devices[J], 2020, 8: 420.

    [24]

    FINNY A S, POPOOLA O, ANDREESCU S. 3D-printable nanocellulose-based functional materials: Fundamentals and Applications[J]. Nanomaterials (Basel),2021,11(9):2358. doi: 10.3390/nano11092358

    [25]

    HE W, WU B, LU M, et al. Fabrication and performance of self-supported flexible cellulose nanofibrils/reduced graphene oxide supercapacitor electrode materials[J]. Molecules,2020,25(12):675−689.

    [26]

    XIONG C, ZHENG C, NIE S, et al. Fabrication of reduced graphene oxide-cellulose nanofibers based hybrid film with good hydrophilicity and conductivity as electrodes of supercapacitor[J]. Cellulose,2021,28(6):3733−3743. doi: 10.1007/s10570-021-03791-0

    [27]

    CHENG Y, REN X, DUAN L, et al. A transparent and adhesive carboxymethyl cellulose/polypyrrole hydrogel electrode for flexible supercapacitors[J]. Journal of Materials Chemistry C,2020,8(24):8234−8242. doi: 10.1039/D0TC01039A

    [28]

    E L, GAN W, SUN J, et al. High-performance supercapacitor device with ultrathick electrodes fabricated from all-cellulose-based carbon aerogel[J]. Energy & Fuels,2021,35(9):8295−8302.

    [29]

    JI A, CHEN Y, WANG X, et al. Inkjet printed flexible electronics on paper substrate with reduced graphene oxide/carbon black ink[J]. Journal of Materials Science:Materials in Electronics,2018,29(15):13032−13042. doi: 10.1007/s10854-018-9425-1

    [30]

    LI D, WANG L, JI W, et al. Embedding silver nanowires into a hy droxypropyl methyl cellulose film for flexible electrochromic devices with high electromechanical stability[J]. ACS Applied Materials & Interfaces,2020,248:1135−1147.

    [31]

    SONG Y, JIANG Y, SHI L, et al. Solution-processed assembly of ultrathin transparent conductive cellulose nanopaper embedding AgNWs[J]. Nanoscale,2015,7(32):13694−13701. doi: 10.1039/C5NR03218K

    [32]

    VALIŪNIENĖ A, VIRBICKAS P, MEDVIKYTĖ G, et al. Urea biosensor based on electrochromic properties of prussian blue[J]. Electroanalysis, 2019, 32 (3): 503-509.

    [33]

    XIAO S, ZHANG Y, MA L, et al. Easy-to-make sulfonatoalkyl viologen/sodium carboxymethylcellulose hydrogel-based electrochromic devices with high coloration efficiency, fast response and excellent cycling stability[J]. Dyes and Pigments,2020,174:108055. doi: 10.1016/j.dyepig.2019.108055

    [34]

    LANG A. electrochromic devices incorporating conjugated polymers and cellulose: new opportunities for organic electronics[D]. Atlanta: Georgia Institute of Technology, 2020.

    [35]

    PHAN G T, PHAM D V, PATIL R A, et al. Fast-switching electrochromic smart windows based on NiO-nanorods counter electrode[J]. Solar Energy Materials and Solar Cells,2021,231:111306. doi: 10.1016/j.solmat.2021.111306

    [36]

    WANG J L, SHENG S Z, HE Z, et al. Self-powered flexible electrochromic smart window[J]. Nano Letters,2021,21(23):9976−9982. doi: 10.1021/acs.nanolett.1c03438

    [37]

    CHEN K, HE J, ZHANG D, et al. Bioinspired dynamic camouflage from colloidal nanocrystals embedded electrochromics[J]. Nano Lett,2021,21(10):4500−4507.

    [38]

    KO T F, CHEN P W, LI K M, et al. High-performance complementary electrochromic device based on iridium oxide as a counter electrode[J]. Materials (Basel),2021,14(7):1591. doi: 10.3390/ma14071591

    [39]

    WANG Z, WANG H, JI S, et al. Design and synthesis of tremella-like Ni-Co-S flakes on co-coated cotton textile as high-performance electrode for flexible supercapacitor[J]. Journal of Alloys and Compounds,2020,814:151789. doi: 10.1016/j.jallcom.2019.151789

    [40]

    WANG H, BARRETT M, DUANE B, et al. Materials and processing of polymer-based electrochromic devices[J]. Materials Science and Engineering:B,2018,228:167−174. doi: 10.1016/j.mseb.2017.11.016

    [41]

    AN T, LING Y, GONG S, et al. A wearable second skin-like multifunctional supercapacitor with vertical gold nanowires and electrochromic polyaniline[J]. Advanced Materials Technologies,2019,4(3):1800473. doi: 10.1002/admt.201800473

    [42] 王瑞平. 纳米纤维素与聚合物复合用于柔性电子器件基底的研究[D]. 广州: 华南理工大学, 2019.

    WANG Ruiping. Research of nanocellulose and polymer composite and its application in flexible electronic devices substrate[D]. Guangzhou: South China University of Technology, 2019.

    [43]

    LEE Y H, KANG J S, PARK J H, et al. Color-switchable electrochromic Co(OH)2/Ni(OH)2 nanofilms with ultrafast kinetics for multifunctional smart windows[J]. Nano Energy,2020,72:104720. doi: 10.1016/j.nanoen.2020.104720

    [44]

    HAN J, JANG G-H, KIM D K, et al. Dual-function electrochromic supercapacitor with graphene electrode[J]. International Journal of Energy Research, 46(8): 10822-10832.

    [45]

    PENG Z, ZHONG W. Facile preparation of an excellent mechanical property electroactive biopolymer-based conductive composite film and self-enhancing cellulose hydrogel to construct a high-performance wearable supercapacitor[J]. ACS Sustainable Chemistry & Engineering,2020,8(21):7879−7891.

    [46]

    YANG Jeong C, KUBOTA T, CHOTSUWAN C, et al. All-solid-state electrochromic device using polymer electrolytes with a wet-coated electrochromic layer[J]. Journal of Electroanalytical Chemistry,2021,897:236748.

    [47]

    YANG L, SONG L, FENG Y, et al. Zinc ion trapping in a cellulose hydrogel as a solid electrolyte for a safe and flexible supercapacitor[J]. Journal of Materials Chemistry A,2020,8(25):12314−12318. doi: 10.1039/D0TA04360E

    [48]

    AH C S, SONG J, KIM T-Y, et al. Long-lived electrochromic device with multilevel bistability based on portable film-type polymer electrolytes[J]. Solar Energy Materials and Solar Cells,2021,221:851126.

    [49]

    DUARTE P, PEREIRA S, CUNHA I, et al. Cellulose-based solid electrolyte membranes through microwave assisted regeneration and application in electrochromic displays[J]. Frontiers in Materials,2020,7:579−592.

    [50]

    GOMEZ I, ALESANCO Y, BLAZQUEZ J A, et al. Room-temperature self-standing cellulose-based hydrogel electrolytes for electrochemical devices[J]. Polymers (Basel),2020,12(11):263−279.

    [51]

    WANG S, ZHANG L, ZENG Q, et al. Cellulose Microcrystals with brush-like architectures as flexible all-solid-state polymer electrolyte for lithium-ion battery[J]. ACS Sustainable Chemistry & Engineering,2020,8(8):3200−3207.

    [52]

    WANG Z, ZHU M, GOU S, et al. Pairing of luminescent switch with electrochromism for quasi-solid-state dual-function smart windows[J]. ACS Applied Materials & Interfaces,2018,10(37):31697−31703.

    [53]

    MACHER S, RUMPEL M, SCHOTT M, et al. Avoiding voltage-induced degradation in pet-ito-based flexible electrochromic devices[J]. ACS Applied Materials & Interfaces,2020,12(32):36695−36705.

    [54]

    EREN E, KARACA G Y, ALVER C, et al. Fast electrochromic response for RF-magnetron sputtered electrospun V2O5 mat[J]. European Polymer Journal,2016,84:345−354. doi: 10.1016/j.eurpolymj.2016.09.027

    [55]

    PIETSCH M, SCHLISSKE S, HELD M, et al. Biodegradable inkjet-printed electrochromic display for sustainable short-lifecycle electronics[J]. Journal of Materials Chemistry C,2020,47:16716−16724.

    [56]

    SUN S, CUI S, WANG F, et al. Flexible reflective electrochromic devices based on V2O5-methyl cellulose composite films[J]. ACS Applied Electronic Materials,2022,4(9):4724−4732. doi: 10.1021/acsaelm.2c00921

    [57]

    LANG A W, LI Y, KEERSMAECKER De M, et al. Transparent wood smart windows: polymer electrochromic devices based on Poly(3, 4-Ethylenedioxythiophene): Poly (Styrene Sulfonate) electrodes[J]. ChemSusChem,2018,11(5):854−863. doi: 10.1002/cssc.201702026

    [58]

    LI Y, VASILEVA E, SYCHUGOV I, et al. Optically transparent wood: recent progress, opportunities, and challenges[J]. Advanced Optical Materials,2018,6(14):1800059. doi: 10.1002/adom.201800059

    [59]

    AHMED E M. Hydrogel: Preparation, characterization, and applications: A review[J]. Journal of Advanced Research,2015,6(2):105−121. doi: 10.1016/j.jare.2013.07.006

    [60]

    NGAMAROONCHOTE A, CHOTSUWAN C. Performance and reliability of cellulose acetate-based gel electrolyte for electrochromic devices[J]. Journal of Applied Electrochemistry,2016,46(5):575−582. doi: 10.1007/s10800-016-0918-4

    [61]

    GOMEZ I, ALESANCO Y, BLÁZQUEZ J A, et al. Room-temperature self-standing cellulose-based hydrogel electrolytes for electrochemical devices[J]. Polymers (Basel),2020,12(11):246−279.

    [62]

    LIM B H, KIM J M, NGUYEN V-T, et al. Functionalized methyl cellulose/LiClO4 composite as an environmentally friendly quasi-solid polymer electrolyte for solid-state electrochromic devices and cellulose-based supercapacitors[J]. Materials Today Energy,2023,33:101263. doi: 10.1016/j.mtener.2023.101263

    [63]

    YANG JEONG C, KUBOTA T, CHOTSUWAN C, et al. All-solid-state electrochromic device using polymer electrolytes with a wet-coated electrochromic layer[J]. Journal of Electroanalytical Chemistry,2021,897:115614. doi: 10.1016/j.jelechem.2021.115614

    [64]

    DUARTE P, PEREIRA S, CUNHA I, et al. Cellulose-Based solid electrolyte membranes through microwave assisted regeneration and application in electrochromic displays[J]. Frontiers in Materials,2020,7:269. doi: 10.3389/fmats.2020.00269

    [65]

    DE B, BANERJEE S, PAL T, et al. Transition Metal oxide-/carbon-/electronically conducting polymer-based ternary composites as electrode materials for supercapacitors [M]. Cham: Springer International Publishing, 2020: 387-434.

    [66]

    PARK C, KIM J M, KIM Y, et al. High-coloration efficiency and low-power consumption electrochromic film based on multifunctional conducting polymer for large scale smart windows[J]. ACS Applied Electronic Materials,2021,3(11):4781−4792. doi: 10.1021/acsaelm.1c00664

    [67]

    HAN Q, WANG R, ZHU H, et al. The preparation and investigation of all thin film electrochromic devices based on reactively sputtered MoO3 thin films[J]. Materials Science in Semiconductor Processing,2021,126:105686. doi: 10.1016/j.mssp.2021.105686

    [68]

    ZHANG W, WANG X, WANG S, et al. Morphology and electrochromic properties of nanostructured polyterthiophene films formed by different deposition modes[J]. Solar Energy Materials and Solar Cells,2021,230:111269. doi: 10.1016/j.solmat.2021.111269

    [69]

    ZHANG W, CHEN X, WANG X, et al. Pulsed electrodeposition of nanostructured polythiothene film for high-performance electrochromic devices[J]. Solar Energy Materials and Solar Cells,2021,219:110775. doi: 10.1016/j.solmat.2020.110775

    [70]

    MING S, LIN K, ZHANG H, et al. Electrochromic polymers with multiple redox couples applied to monitor energy storage states of supercapacitors[J]. Chemical Communications,2020,56(39):5275−5278. doi: 10.1039/D0CC00690D

    [71]

    SAY M G, BRETT C J, EDBERG J, et al. Scalable paper supercapacitors for printed wearable electronics[J]. ACS Applied Materials & Interfaces,2022,14(50):55850−55863.

    [72]

    BROOKE R, FALL A, BORRÀS M, et al. Nanocellulose based carbon ink and its application in electrochromic displays and supercapacitors[J]. Flexible and Printed Electronics,2021,6(4):045011. doi: 10.1088/2058-8585/ac3ddb

    [73]

    LANG A W, ÖSTERHOLM A M, REYNOLDS J R. Paper-based electrochromic devices enabled by nanocellulose-coated substrates[J]. Advanced Functional Materials,2019,29:1903487. doi: 10.1002/adfm.201903487

    [74] 丁晨峰. 基于细菌纤维素基复合材料的设计及在超级电容器电极和锂金属电池电解质的研究和应用[D]. 北京: 北京化工大学, 2020.

    DING Chenfeng. Design and application of bacterial cellulose-based composite materials in supercapacitor electrodes and lithium metal battery electrolytes[D]. Beijing: Beijing University of Chemical Technology, 2020.

    [75]

    UJVÁRI M, TAKÁCS M, VESZTERGOM S, et al. Monitoring of the electrochemical degradation of PEDOT films on gold using the bending beam method[J]. Journal of Solid-State Electrochemistry,2011,15(11):2341−2349.

    [76]

    LI J, FANG L, TAIT W R, et al. Preparation of conductive composite hydrogels from carboxymethyl cellulose and polyaniline with a nontoxic crosslinking agent[J]. RSC Advances,2017,7:54823−54828. doi: 10.1039/C7RA10788A

    [77]

    MEHANDZHIYSKI A Y, ZOZOULENKO I. Computational microscopy of PEDOT: PSS/Cellulose composite paper[J]. ACS Applied Energy Materials,2019,2(5):3568−3577. doi: 10.1021/acsaem.9b00307

    [78]

    BISWAS S K, TANPICHAI S, WITAYAKRAN S, et al. Thermally superstable cellulosic-nanorod-reinforced transparent substrates featuring microscale surface patterns[J]. ACS Nano,2019,13(2):2015−2023.

    [79]

    ZHANG S, FU R, GU Y, et al. Preparation of nanocellulose-based polyaniline composite film and its application in electrochromic device[J]. Journal of Materials Science:Materials in Electronics,2017,28:10158−10165. doi: 10.1007/s10854-017-6778-9

    [80]

    REN J, ZHANG S, YAN B, et al. Solution-processable core/shell structured nanocellulose/poly(o-Methoxyaniline) nanocomposites for electrochromic applications[J]. Cellulose,2020,27(16):9467−9478. doi: 10.1007/s10570-020-03424-y

  • 期刊类型引用(1)

    1. 贺海燕. 具有显示效果的固态电致变色器件的研究现状. 广西物理. 2024(04): 31-33 . 百度学术

    其他类型引用(0)

图(7)
计量
  • 文章访问数:  162
  • HTML全文浏览量:  31
  • PDF下载量:  75
  • 被引次数: 1
出版历程
  • 收稿日期:  2023-03-01
  • 修回日期:  2023-05-10
  • 网络出版日期:  2023-06-27
  • 刊出日期:  2023-06-24

目录

/

返回文章
返回
x 关闭 永久关闭