王鹏江, 杨阳, 王东杰, 等. 悬臂式掘进机煤矸智能截割控制系统与方法[J]. 煤炭学报, 2021, 46(S2): 1124-1134.
引用本文: 王鹏江, 杨阳, 王东杰, 等. 悬臂式掘进机煤矸智能截割控制系统与方法[J]. 煤炭学报, 2021, 46(S2): 1124-1134.
WANG Pengjiang, YANG Yang, WANG Dongjie, et al. Intelligent cutting control system and method of coal and gangue in robotic roadheader[J]. Journal of China Coal Society, 2021, 46(S2): 1124-1134.
Citation: WANG Pengjiang, YANG Yang, WANG Dongjie, et al. Intelligent cutting control system and method of coal and gangue in robotic roadheader[J]. Journal of China Coal Society, 2021, 46(S2): 1124-1134.

悬臂式掘进机煤矸智能截割控制系统与方法

Intelligent cutting control system and method of coal and gangue in robotic roadheader

  • 摘要: 为实现煤矿掘进机机器人化和无人化的目标,提高掘进机截割煤矸的效率和智能化程度, 提出了一种悬臂式掘进机煤矸智能截割控制系统与方法。 详细阐述了系统的原理和硬件组成。 悬 臂式掘进机煤矸智能截割控制系统利用实时采集的多种传感器信息为控制变量,主要包括截割电 机电流 I、油缸压力 p 以及截割臂振动加速度 acc ,实现掘进机在不同截割状态下煤矸的识别,驱动 掘进机截割臂智能截割。 系统硬件部分包含传感与检测系统、机载主控系统和系统执行机构,并构 建了远程监控平台。 系统依据煤炭行业电气标准分别对一般工况和特殊工况的截割控制策略进行 了方法构建。 在一般工况下,基于多种传感器信息利用改进粒子群算法优化的 BP 神经网络控制 器实现截割载荷识别,提高掘进机对煤矸识别的准确性,实现截割臂摆速的自适应截割。 特殊工况 下分别对硬质点识别和预防闷车 2 种工况进行控制逻辑构建,通过 Automation Studio 软件编程实 现对特殊工况的判断和处理。 以 EBZ135 型掘进机为例,进行了地面验证性实验。 实验结果表明, 截割臂摆速的自适应调节时间约在 0.8 s 左右且无超调量,具有良好的鲁棒性。 硬质点识别控制和 预防闷车控制的实验结果证明了系统对于特殊工况识别精准、快速,处理过程稳定、可靠,验证了所 设计的控制方法具有高的可靠性和控制精度。

     

    Abstract: In order to realize the goal of robotization and unmanned operation,and to improve the efficiency and intelli⁃ gence degree of cutting coal and gangue with roadheader,a control method and system of intelligent cutting on coal and gangue with roadheader has been put forward. The principle and hardware components of the system are described in detail. The intelligent gangue cutting control system of roadheader uses a variety of sensor information collected in real time as control variables,mainly including cutting motor current I,cylinder pressure p and cutting arm vibration acceleration acc ,to achieve the identification of gangue in different cutting states of the roadheader and drive the intelligent cutting of the roadheader’s cutting arm. The hardware part of the system consists of a sensing and detection sys⁃ tem,an on⁃board master control system and a system actuator,and a remote monitoring platform. According to the elec⁃ trical standards of coal industry,the cutting control strategies of general working conditions and special working condi⁃ tions are constructed respectively. Under the general working conditions,the BP neural network controller optimized by the improved particle swarm optimization algorithm based on a variety of sensor information is used to realize cutting load identification,improve the accuracy of coal and gangue identification of roadheader,and realize the adaptive cut⁃ ting arm swing velocity. In the special working conditions,the control logics of hard spot identification and stuffy car prevention are constructed respectively,and the judgment and treatment of special working conditions are realized by Automation Studio software programming. Taking EBZ135 roadheader as an example, the verification experiment is carried out. The experimental results show that the adaptive adjustment time of the swing velocity of the cutting arm is about 0.8 s and there is no overshoot,which has good robustness. The experimental results of hard point identifica⁃ tion control and stuffy car prevention control show that the system is accurate and fast for the special working condi⁃ tions recognition,and the designed control strategy has a high reliability and control precision.

     

/

返回文章
返回