Cu2 Ox 2+ -ZSM-5 结构及其催化甲烷氧化生成甲醇机理

Cu2Ox2+-ZSM-5 structure and its catalytic mechanism for oxidation of methane to methanol

  • 摘要: 铜基分子筛催化剂是一种可在低温条件下将甲烷直接催化转化为甲醇的催化剂。 为探究 双核铜中心的Cu2Ox2+ -ZSM-5(x=1,2)的结构及其催化甲烷直接氧化生成甲醇的反应机理,基 于密度泛函理论,根据Cu2 2+ -ZSM-5 在 O2 预处理后形成的Cu2 O2 2+ -ZSM-5 结构及其稳定性 差异,研究了Cu2O22+-ZSM-5→Cu2O2+-ZSM-5→ Cu22+-ZSM-5连续催化CH4直接氧化生 成CH3OH的过程。 结果表明,Cu22+-ZSM-5更倾向于形成(CuO)22+-ZSM-5,CuOOCu2+- ZSM-5 和CuO2Cu2+ -ZSM-5 三种含有 O—O 键的Cu2O22+ -ZSM-5 催化剂结构,而 O—O 键断 裂形成的CuOCuO2+ -ZSM-5 所需克服的能垒较高,且稳定性差。 (CuO)22+ -ZSM-5, CuO2Cu2+ -ZSM-5,CuOOCu2+ -ZSM-5 和Cu2 O2+ -ZSM-5 均可催化 CH4 直接氧化生成 CH3OH。 CuO2Cu2+ -ZSM-5 表现出最高的催化活性,催化氧化 CH4 生成 CH3 OH 反应控速步骤 为吸附态CH4的解离,能垒为150.69kJ/mol,总反应热为-131.60kJ/mol。 电子结构分析表明,当O 原子具有较高的电子离域性和更靠近费米能级的 p 带中心时,其催化活性较高。

     

    Abstract: Copper⁃based zeolite catalyst has the catalytic ability for the direct oxidation of methane to methanol under low⁃temperature conditions. Based on the structure and stability differences of Cu2O22+ -ZSM-5 formed by the pre⁃ treatment of O2 on Cu2 2+ -ZSM-5,the successive processes of Cu2 O2 2+ -ZSM-5→Cu2 O2+ -ZSM-5→ Cu2 2+ -ZSM-5 to catalyze the direct oxidation of methane to methanol were investigated by employing density func⁃ tional theory. The purpose is to obtain the structure of Cu2Ox2+-ZSM-5 (x=1,2) catalysts and the catalytic per⁃ formances for the direct oxidation of methane to methanol. The results show that the Cu2 2+ - ZSM - 5 prefers to form three kinds of Cu2O22+-ZSM-5 configurations involving O—O bond that the (CuO)22+ -ZSM-5,CuOOCu2+ - ZSM-5 and CuO2Cu2+ -ZSM-5 while the break of O—O bond leads to CuOCuO2+ -ZSM-5 configuration with poor stability requiring high temperature and formation energy barrier. All of (CuO)22+ -ZSM-5,CuOOCu2+ -ZSM-5 and CuO2Cu2+ -ZSM-5 as well as Cu2O2+ -ZSM-5 can catalyze the direct oxidation of methane to meth⁃ anol. The CuO2Cu2+ -ZSM-5 presents the highest catalytic performances where the determining⁃step is the dissocia⁃ tion of adsorbed CH4 with the energy barrier of the determining⁃step of 150.69 kJl/mol and the total reaction energy of -131.60 kJ/mol. The analysis of electronic structure indicates the correlation of high catalytic performance with a high level of electron delocalization and close p⁃band center relative to the Fermi level.

     

/

返回文章
返回