基于抛掷爆破预测的BP神经网络参数优化方法
-
摘要: 研究了不同隐含节点个数、训练函数、转移函数、学习率对BP神经网络预测结果准确性和收敛速度的影响;对比分析了参数优化后的BP模型与径向基神经网络、支持向量机预测模型的结果;并应用某露天矿抛掷爆破作业的实测数据进行了相关实验。实验结果表明:最优BP模型的拓扑结构为10-6-3;最佳的训练函数为LM函数,正切和线性函数的组合为最优的转移函数,最佳的网络学习率为0.77;参数优化后BP模型的最远抛掷距离、抛掷率、松散系数的预测结果与测试样本的标准差最小,分别为9.567 8,0.036 3,0.041 4,即参数优化后的BP模型预测结果最优。