煤矿井下员工不安全行为智能识别系统
Intelligent recognition system of unsafe behavior of underground coal miners
-
摘要: 不安全行为管理是煤矿安全管理工作中的重要组成部分。 融合现代技术并实现煤矿井下 员工不安全行为的智能识别,对煤矿安全管理的智能化建设具有重要意义。 为实现井下员工不安 全行为的智能识别,首先将不安全行为分为静态不安全行为、动态不安全行为和互动不安全行为。 然后设计了一种基于计算机视觉的不安全行为识别系统,该系统包括视频采集、数据仓库、视频处 理、模型管理、规则推理和预警系统 6 个子系统,分别对应井下监控视频的汇聚和管理、数据存储、 静态和动态不安全行为识别、模型管理、互动不安全行为识别和预警触发、预警管理六大功能。 整 个识别系统采用 OpenPose 神经网络对人和人体关键点进行识别,采用 YoloV3 神经网络对设备与 环境进行识别,采用 MobileNetV3 神经网络与 ST-GCN 神经网络分别对静态不安全行为和动态不 安全行为进行识别,采用规则推理对互动不安全行为进行识别;神经网络模型基于 Python+PyTorch 编写,并采用公共数据集和专用数据集分别进行预训练和正式训练;整个系统对静态不安全行为、 动态不安全行为、互动不安全行为识别的准确率分别达到了 89.4%,90.7%和 75.6%;最后基于 Ku⁃ bernetes+Docker 容器的部署方式实现了识别系统在实际生产环境中的部署。 整个研究融合了多种 方法,实现了多种井下不安全行为的识别,并在实际生产环境中得到应用。Abstract: Unsafe behavior management is an important part of coal mine safety management. Integrating modern tech⁃ nologies to realize the intelligent recognition of unsafe behavior of coal mine employees is of great significance to the intelligent construction of coal mine safety management. In order to realize the intelligent recognition of underground employees' unsafe behaviors,the unsafe behaviors are divided into static unsafe behaviors,dynamic unsafe behaviors and interactive unsafe behaviors. Then,an unsafe behavior recognition system based on computer vision is designed. The system includes six subsystems:video acquisition,data warehouse,video processing,model management,rule rea⁃ soning and early warning system,which correspond to the six functions that include the aggregation and management of underground monitoring video,data storage,static and dynamic unsafe behavior recognition,model management,inter⁃ active unsafe behavior identification and early warning trigger,and early warning management. The whole system uses Open Pose neural network to identify the key points of human and human body,uses YoloV3 neural network to identify equipment and environment,uses MobileNetV3 neural network to identify static unsafe behavior,uses ST⁃GCN neu⁃ ral network to identify dynamic unsafe behavior and uses rule reasoning method to identify interactive unsafe behavior. The neural network model is written using Python + pytorch, and uses public data set and special data set for pre⁃training and formal training. The accuracy of static unsafe behavior,dynamic unsafe behavior and interactive unsafe behavior recognition of the whole system is up to 89.4%,90.7% and 75.6% respectively. Finally,based on ku⁃ bernetes + docker container,the deployment of the identification system in the actual production environment is real⁃ ized. The whole research integrates a variety of methods to the identification of multiple unsafe behaviors,and has been applied in the actual production environment.