基于人工免疫算法的边坡稳定性预测模型

  • 摘要: 根据生物免疫系统抗体识别抗原机理,提出基于人工免疫算法的边坡稳定性预测模型。将边坡稳定状态训练样本集定义为抗原集,边坡稳定性影响因素定义为抗体、抗原上的基因段,通过反复进行遗传计算操作,构建对边坡稳定性具有很好表达能力的记忆抗体集合。计算预测样本与记忆抗体集合之间的亲和力,利用K-最近邻法预测样本的稳定状态。同时构建自适应人工免疫算法,可有效提高模型的有效性和可靠性。实例分析证实自适应人工免疫算法能有效预测边坡稳定状态,其预测精度优于基本人工免疫算法,表明自适应策略的有效性。该方法可避免直接建立边坡稳定性影响因素与稳定状态之间复杂非线性函数关系,能有效降低建模复杂度,具有更好的实用性。

     

/

返回文章
返回