张翼, 陈寅彪, 张帅, 余学海, 李延兵, 顾永正, 常林, 纪禺山, 黄永达, 赵永椿. 湿法脱硫系统和湿式静电除尘器中砷分布及形态分析[J]. 煤炭学报, 2020, 45(S1): 463-469. DOI: 10.13225/j.cnki.jccs.2019.1181
引用本文: 张翼, 陈寅彪, 张帅, 余学海, 李延兵, 顾永正, 常林, 纪禺山, 黄永达, 赵永椿. 湿法脱硫系统和湿式静电除尘器中砷分布及形态分析[J]. 煤炭学报, 2020, 45(S1): 463-469. DOI: 10.13225/j.cnki.jccs.2019.1181
ZHANG Yi, CHEN Yinbiao, ZHANG Shuai, YU Xuehai, LI Yanbing, GU Yongzheng, CHANG Lin, JI Yushan, HUANG Yongda, ZHAO Yongchun. Distribution of As species in WFGD and WESP system[J]. Journal of China Coal Society, 2020, 45(S1): 463-469. DOI: 10.13225/j.cnki.jccs.2019.1181
Citation: ZHANG Yi, CHEN Yinbiao, ZHANG Shuai, YU Xuehai, LI Yanbing, GU Yongzheng, CHANG Lin, JI Yushan, HUANG Yongda, ZHAO Yongchun. Distribution of As species in WFGD and WESP system[J]. Journal of China Coal Society, 2020, 45(S1): 463-469. DOI: 10.13225/j.cnki.jccs.2019.1181

湿法脱硫系统和湿式静电除尘器中砷分布及形态分析

Distribution of As species in WFGD and WESP system

  • 摘要: 煤炭燃烧造成煤中As释放,进入到湿法脱硫(WFGD)系统后可转移向石膏,导致石膏在下游生产利用过程中存在一定释放风险。因此,明确WFGD系统内As的含量分布和形态分布至关重要。利用高效液相色谱-氢化物发生-原子荧光光谱联用技术(HPLC-HG-AFS)对燃煤电站WFGD系统中砷的含量分布和形态演变规律进行了详细研究,并借助X射线衍射分析(XRD)和X射线荧光分析(XRF)研究了石膏生产过程中的矿物组成和元素组成。结果表明,石膏生产过程中固相组分的主要矿物组成为石膏,主要元素组成为CaO和SO3,两者总含量在89.97%~95.34%。石灰石中As的含量为1.30 μg/g,其中As (Ⅲ)的含量占24%。经脱硫塔内强制氧化将As (Ⅲ)氧化后,石膏浆液中As (Ⅲ)降低10%。石膏浆液中的As经过旋流分离器的筛选分离过程,大部分的As转运到脱硫废水处理过程,减少了进入石膏中的砷含量。石膏中砷含量为1.28 μg/g,其中As (Ⅲ)和As (Ⅴ)的比例分别为14%和86%。脱硫废水固相和液相中As的含量分别为8.3 μg/g和0.006 μg/L。经过废水处理过程,固相中的As几乎被完全脱除,同时液相中的16.7%的As也得到脱除。脱除后的As转移到废水处理产物中,造成As在脱硫废水处理产物的固相中存在一定程度的富集,其中,中和箱、沉淀箱和絮凝箱固相组分中As的含量高达5.96,6.13和6.7 μg/g,超出石膏中As含量的4~5倍。废水处理过程产物中的As大部分以毒性较小的As (Ⅴ)形式存在,占比超过87%。湿式静电除尘器(WESP)固相灰中As的浓度很高,达到12.5 μg/g,WESP灰中主要为As (Ⅴ)并以残渣态形式存在于灰中,不易向环境浸出。

     

    Abstract: Coal combustionprocess causes As release and As can migrate to gypsum when entering the wet flue gas desulfurization (WFGD) system.It is of great significance to get a better understanding on the partitioning and species of As in a WFGD system. The partitioning and species of As in a WFGD system are determined by high performance liquid chromatography-hydride generation-atomic fluorescence spectrometry (HPLC-HG-AFS) technique. In addition,the mineral composition and chemical composition in the process of gypsum production are characterized by X-ray diffraction (XRD) and X-ray fluorescence (XRF),respectively. The results show that the main mineral composition in gypsum sampleis gypsum,the main chemical composition are CaO and SO3,and the total content of which is in the range 89.97%-95.34%. The concentration of As in limestone is 1. 30 μg/g with As (Ⅲ) accounting for 24%.As (Ⅲ) can be oxidized by forced oxidation process resulting As (Ⅲ)proportion 10% decrease. A small amount of As is transported to gypsum,which contribute to the separation function from the hydrocyclone. The concentration of As in gypsum is determined as 1.28 μg/g where the proportion of As (Ⅲ) and As(Ⅴ) are 14%and 86%,respectively. The concentration of As in the solid fraction and liquid fraction of desulfurization effluent are 8.3 μg/g and 0.006 μg/L,respectively.Nearly all the As in solid fraction is removed by effluent treatment process,andalso 16.7%of As in liquid fraction is removed,resulting in that the As concentration in desulfurization effluent is over 4-5 times higher than that in gypsum. An enrichment of As in desulfurization effluent treatment process is addressed,whereAs concentration in neutralization tank,precipitation tank,and flocculation tank are 5.96,6.13 and 6.70 μg/g,respectively. Most As in this product is determined as As(Ⅴ) with proportion over 87%.As is strongly enriched in wet electrostatic precipitators (WESP) ash,where As(V)is predominant existence as residual form and is difficult to leach to the environment.

     

/

返回文章
返回