周东旭, 谢明佐, 宣鹏程, 赵明辉, 贾瑞清. 煤矿轻型协作机械臂逆运动学解算与验证[J]. 煤炭学报, 2019, 44(S2): 791-799. DOI: 10.13225/j.cnki.jccs.2019.1289
引用本文: 周东旭, 谢明佐, 宣鹏程, 赵明辉, 贾瑞清. 煤矿轻型协作机械臂逆运动学解算与验证[J]. 煤炭学报, 2019, 44(S2): 791-799. DOI: 10.13225/j.cnki.jccs.2019.1289
ZHOU Dongxu, XIE Mingzuo, XUAN Pengcheng, ZHAO Minghui, JIA Ruiqing. Inverse kinematics solution and verification of light-duty collaborative manipulator in coal mine[J]. Journal of China Coal Society, 2019, 44(S2): 791-799. DOI: 10.13225/j.cnki.jccs.2019.1289
Citation: ZHOU Dongxu, XIE Mingzuo, XUAN Pengcheng, ZHAO Minghui, JIA Ruiqing. Inverse kinematics solution and verification of light-duty collaborative manipulator in coal mine[J]. Journal of China Coal Society, 2019, 44(S2): 791-799. DOI: 10.13225/j.cnki.jccs.2019.1289

煤矿轻型协作机械臂逆运动学解算与验证

Inverse kinematics solution and verification of light-duty collaborative manipulator in coal mine

  • 摘要: 煤矿协作机械臂能够在煤矿生产中协助工人完成相应的生产任务,为解决6自由度煤矿轻型协作机械臂的运动学逆解问题并提高其逆解算法的计算速度,提出了1种基于几何方法与欧拉角变换方法的6自由度机械臂运动学逆解算法。该算法实现简单,求解速度比传统的迭代法和解析法快。采用Denavit-Hartenberg方法建立机械臂的数学模型,推导其正运动学方程,采用几何方法求解机械臂逆解的前3轴角度,采用Z-Y-Z欧拉角变换方法求解其后3轴角度,并在Matlab中编写逆解函数用于实现所提出的逆解算法; 在机器人虚拟仿真软件V-REP中建立虚拟的机械臂动力学模型,在Matlab中使用已经编写完成的逆解算法函数通过API接口连接并控制V-REP中的虚拟机械臂,使其末端执行器运动至指定的位置与姿态,从而验证该逆解算法的正确性; 在微控制器中使用C语言编写函数实现该逆解算法,将该算法与另外2种常见算法的求解时间进行对比,从而验证了该逆解算法在微控制器中应用的快速性和实用性。Matlab与V-REP联合仿真实验结果表明,该逆解算法求得的机械臂运动学逆解是正确的; 在微控制器中求解时间对比实验结果表明,该算法的求解速度比传统算法有一定的提高。该逆解算法为进一步研究协作机械臂的精确定位、轨迹规划与运动规划提供了必要的前提条件。

     

    Abstract: The coal mine cooperative manipulator can assist workers in completing production tasks in coal mine production.In order to solve the inverse kinematics problem of the 6-DOF coal mine light-duty collaborative manipulator and improve the calculation speed of the inverse solution algorithm, an inverse kinematics algorithm for the manipulator based on the geometric method and Euler angle transformation method is proposed.The algorithm is simple to implement, and the solution speed is faster than the traditional iterative method and analytical method.Firstly, the mathematical model of the manipulator is established by the Denavit-Hartenberg method, and the forward kinematics equation is derived.The geometrical method is used to solve the first three-axis angle of the manipulator.The Z-Y-Z Euler angle transformation method is used to solve the last three-axis angle.The function written in Matlab is used to implement the proposed inverse solution algorithm.Then, a virtual manipulator dynamics model is built in the robot virtual simulation software V-REP.In Matlab, the inverse solution function is used to connect and control the virtual robot in V-REP through the API interface, so that the end effector moves to the specified position and orientation to verify the correctness of the inverse kinematics algorithm.Finally, the inverse algorithm is implemented in the microcontroller using C language, and the solution time of the algorithm is compared with two other common algorithms to verify the fastness and practicality of the inverse kinematics algorithm in the microcontroller.The results of Matlab and V-REP simulation experiments show that the inverse solution algorithm is correct.The results of time comparison experiments in the microcontroller show that the algorithm is faster than the traditional algorithm.

     

/

返回文章
返回