贺冲,郭晶,秦育红,等. Shell煤气化炉气氛下熔渣中金属铁析出及对其黏度影响的模拟研究[J]. 煤炭学报,2023,48(8):3218−3228. DOI: 10.13225/j.cnki.jccs.2023.0286
引用本文: 贺冲,郭晶,秦育红,等. Shell煤气化炉气氛下熔渣中金属铁析出及对其黏度影响的模拟研究[J]. 煤炭学报,2023,48(8):3218−3228. DOI: 10.13225/j.cnki.jccs.2023.0286
HE Chong,GUO Jing,QIN Yuhong,et al. Modelling study of the precipitation and agglomeration behavior of metallic iron in coal slag and its effect on the slag viscosity under shell coal gasification atmosphere[J]. Journal of China Coal Society,2023,48(8):3218−3228. DOI: 10.13225/j.cnki.jccs.2023.0286
Citation: HE Chong,GUO Jing,QIN Yuhong,et al. Modelling study of the precipitation and agglomeration behavior of metallic iron in coal slag and its effect on the slag viscosity under shell coal gasification atmosphere[J]. Journal of China Coal Society,2023,48(8):3218−3228. DOI: 10.13225/j.cnki.jccs.2023.0286

Shell煤气化炉气氛下熔渣中金属铁析出及对其黏度影响的模拟研究

Modelling study of the precipitation and agglomeration behavior of metallic iron in coal slag and its effect on the slag viscosity under Shell coal gasification atmosphere

  • 摘要: 气流床煤气化过程中,煤中无机矿物质升温熔融转变为熔渣,熔渣通过液态排渣单元连续排出炉外,因此熔渣良好的流动性(黏度)是气化炉长周期稳定运行的关键。我国高铁煤(煤灰中氧化铁的质量分数高于15%)分布广泛,比如内蒙古锡林浩特煤、河南义马煤、云南镇雄煤等。由于Shell煤气化炉内还原性气体(CO和H2)的总体积分数较高( > 86%),高铁熔渣在液态排渣过程中易发生金属铁析出,形成大的含铁渣块,导致气化炉无法顺畅排渣甚至非正常停车,因此深入研究Shell煤气化炉气氛下熔渣中金属铁的析出行为是高铁熔渣流动性调控的重要依据。基于此,以热力学模拟为基础,依据金属铁析出和团聚机理,结合熔渣结晶特性,建立熔渣中金属铁析出和团聚的动力学模型,并定量分析金属铁对熔渣结晶和黏度的影响。热力学模拟表明,Shell煤气化炉气氛下高铁熔渣发生金属铁析出,且氧化钙的质量分数增加促进金属铁析出。分别以熔渣中还原性气体扩散和金属铁沉降为速控步骤,建立金属铁析出和团聚的动力学模型;氧化钙的质量分数增加或者温度升高,熔渣黏度降低,促进熔渣中还原性气体扩散,金属铁的质量分数增加且易发生团聚。提出金属铁团聚的临界时间作为判断金属铁团聚的关键参数;降低气化炉排渣温度或减少氧化钙的质量分数,金属铁团聚临界时间增加,避免熔渣中金属铁团聚。将晶体体积分数的热力学平衡值引入结晶动力学模型(KJMA公式),获得金属铁对熔渣结晶和黏度的影响,发现金属铁析出促进钙长石结晶,熔渣黏度迅速增加;虽然较低排渣温度下钙长石的体积分数达到热力学平衡值所需时间更长,但黏度增加至排渣黏度上限25 Pa·s所需的时间更短。建议通过适当降低排渣温度,或添加富硅助剂,或与高硅煤共气化,可适当避免高铁熔渣中金属铁的析出和团聚,避免熔渣黏度突增和气化炉排渣不畅,有利于气化炉长周期运行。

     

    Abstract: The minerals in coal are transformed to the coal slag during the entrained-flow coal gasification process. The stable operation of the gasifier relies on the smooth slag tapping process. The flow behavior of coal slag is quantified by the viscosity. The high-iron coal (w(Fe2O3)>15%, ash basis) is widely distributed in China. The iron (Fe2+ or Fe3+) in the coal slag is easily transformed to the metallic iron due to the high content of the reducing gas in the Shell coal gasifier. The presence of metallic iron may lead to the slag blockage or even the unscheduled shut-down of coal gasifier. Hence, it is necessary to investigate the metallic iron precipitation behavior and its effect on coal slag viscosity. The precipitation behavior of metallic iron is investigated by the thermodynamic modelling. Then, the kinetic models of the metallic iron precipitation and agglomeration are built, respectively. Finally, the effects of metallic iron on the crystallization and viscosity of coal slag are quantified. The metallic iron is precipitated under the Shell coal gasifier atmosphere. The high-CaO coal slag favors the metallic iron formation. The metallic iron precipitation model is built based on the diffusion behavior of the reducing gas in the coal slag. In contrast, the metallic iron agglomeration model is established according to the sedimentation of metallic iron particles in the liquid coal slag. Both increasing the CaO content of coal slag and employing high slagging temperature results in the drop of slag viscosity, and the low slag viscosity improves the iron reduction process and metallic iron sedimentation. Therefore, the precipitation and agglomeration of metallic iron are improved. The critical time (tc) of metallic iron agglomeration is proposed and is used as the guide to prevent the metallic iron agglomeration. The metallic iron agglomeration can be alleviated by decreasing the slag tapping temperature or reducing the CaO content of coal slag. The traditional KJMA model is modified by considering the thermodynamic equilibrium content of solid phase in the slag. The metallic iron induces the strong crystallization of anorthite in slag and the slag viscosity is therefore significantly increased. The time of slag viscosity increasing to 25 Pa·s is decreased with the slag tapping temperature, while the time of the solid content achieving the thermodynamic equilibrium is increased. The study demonstrates that the metallic iron precipitation and agglomeration can be alleviated by adopting a low slag tapping temperature, or by using the silicon-rich additive, or co-gasifying with the high-silicon coal during the entrained-flow gasification of high-iron coal.

     

/

返回文章
返回