许云龙,周长俊,刘晓敏,等. 路用煤气化渣混凝土的制备与微观结构[J]. 煤炭学报,2024,49(S1):424−433. DOI: 10.13225/j.cnki.jccs.2023.0449
引用本文: 许云龙,周长俊,刘晓敏,等. 路用煤气化渣混凝土的制备与微观结构[J]. 煤炭学报,2024,49(S1):424−433. DOI: 10.13225/j.cnki.jccs.2023.0449
XU Yunlong,ZHOU Changjun,LIU Xiaomin,et al. Preparation and microstructure of coal gasification slag concrete for road construction[J]. Journal of China Coal Society,2024,49(S1):424−433. DOI: 10.13225/j.cnki.jccs.2023.0449
Citation: XU Yunlong,ZHOU Changjun,LIU Xiaomin,et al. Preparation and microstructure of coal gasification slag concrete for road construction[J]. Journal of China Coal Society,2024,49(S1):424−433. DOI: 10.13225/j.cnki.jccs.2023.0449

路用煤气化渣混凝土的制备与微观结构

Preparation and microstructure of coal gasification slag concrete for road construction

  • 摘要: 为处理存量巨大的煤气化渣(CGS),寻找河砂的替代物,研究煤气化渣混凝土的路用可行性,并探讨CGS对水泥基材料性能的影响。以CGS(粒径在4.75 mm以下)为细集料,按照0%、20%、40%、60%、80%等质量分数替代河砂制作CGS砂浆,通过开展砂浆流动度试验、抗压强度试验、X射线衍射分析、压汞分析、扫描电子显微镜及能谱分析,系统研究了CGS替代率对砂浆的流变性、力学性能、水化产物、孔结构以及微观形貌的影响;通过综合比选确定CGS最优替代率,并在此替代率下开展路用CGS混凝土配合比设计,以CGS混凝土的28 d弯拉强度评价其力学性能可靠性。结果表明:随着CGS替代率增加,CGS砂浆的流动性逐渐下降、28 d抗压强度逐渐升高;综合考虑砂浆流动性和力学性能,CGS的最优替代率为80%,对应的CGS砂浆抗压强度可达34 MPa;微观分析发现,CGS可以促进CGS砂浆水泥水化反应,使C—S—H凝胶相对质量分数增加,C2S和C3S质量分数减少;掺入CGS降低了砂浆临界孔径、平均孔径和中值孔径,提高了小孔径孔隙占比,改善其孔径分布类型,进而提高小孔径孔隙占比,使得孔隙连通性下降,表现出更高的致密性;掺入CGS后,CGS砂浆并未生成新的水化产物,降低了C—S—H凝胶的钙硅比,增强了凝胶结晶度,砂浆耐久性提高。在变异系数0.1的情况下,替代率80%的CGS混凝土可保证无标准轴载农村公路水泥混凝土路面使用10 a。

     

    Abstract: In order to utilize the huge stock of coal gasification slag (CGS) as an alternative to river sand, the feasibility of coal gasification slag concrete for road construction is studied, and the influence of CGS on the performance of cement-based material is investigated. Using the CGS (particle size below 4.75 mm) as fine aggregate, the CGS mortar is made by replacing river sand with the same mass CGS. Replacement ratios are 0%, 20%, 40%, 60%, and 80%, respectively. Through the mortar fluidity test, compressive strength test, X-ray diffraction analysis, mercury intrusion analysis, scanning electron microscopy, and energy spectrum analysis, the influence of CGS replacement ratio on the rheological property, mechanical property, hydration product, pore structure and micro morphology of the mortar are systematically studied. The optimal substitution rate of CGS is determined through comprehensive comparison and selection, and the mix design of CGS concrete for road construction is carried out using this substitution rate. The mechanical performance reliability of CGS concrete is evaluated based on 28 d flexural tensile strength. The results show that as the substitution rate of CGS increases, the flowability of CGS mortar gradually decreases and the compressive strength at 28 days gradually increases. Taking into account the fluidity and mechanical properties of the mortar, the optimal substitution rate for CGS is 80%, and the corresponding compressive strength of CGS mortar is 34 MPa. The microscopic analysis shows that the CGS can promote the cement hydration reaction of CGS mortar, increase the relative content of C—S—H gel, and reduce the content of C2S and C3S. The addition of CGS reduces the critical pore size, average pore size, and median pore size of mortar, increases the proportion of small pore size, improves its pore size distribution type, and thus increases the proportion of small pore size, resulting in a decrease in pore connectivity and higher compactness. After adding CGS, the CGS mortar does not produce new hydration products, which reduces the calcium silica ratio of C—S—H gel, enhances the crystallinity of gel, and improves the durability of mortar. With variation coefficient 0.1, the CGS concrete with a substitution rate of 80% can ensure the use of cement concrete pavement for rural road without standard axle load for 10 years.

     

/

返回文章
返回