王岩, 张旭辉, 曹现刚, 赵友军, 杨文娟, 杜昱阳, 石硕. 掘进工作面数字孪生体构建与平行智能控制方法[J]. 煤炭学报, 2022, 47(S1): 384-394.
引用本文: 王岩, 张旭辉, 曹现刚, 赵友军, 杨文娟, 杜昱阳, 石硕. 掘进工作面数字孪生体构建与平行智能控制方法[J]. 煤炭学报, 2022, 47(S1): 384-394.
WANG Yan, ZHANG Xuhui, CAO Xiangang, ZHAO Youjun, YANG Wenjuan, DU Yuyang, SHI Shuo. Construction of digital twin and parallel intelligent control method for excavation face[J]. Journal of China Coal Society, 2022, 47(S1): 384-394.
Citation: WANG Yan, ZHANG Xuhui, CAO Xiangang, ZHAO Youjun, YANG Wenjuan, DU Yuyang, SHI Shuo. Construction of digital twin and parallel intelligent control method for excavation face[J]. Journal of China Coal Society, 2022, 47(S1): 384-394.

掘进工作面数字孪生体构建与平行智能控制方法

Construction of digital twin and parallel intelligent control method for excavation face

  • 摘要: 煤矿井下掘进工作面环境恶劣,巷道近程或地面远程智能控制决策依赖“人员-设备-巷 道-环境”在数字空间与物理空间的交互协同。 掘进工作面数字孪生体是实现数字掘进与物理掘 进交互融合的重要手段。 针对巷道近程或地面远程智能掘进场景的虚实交互控制需求,通过分析 掘进工作面异构要素的静态特性、动态特性、行为规则及交互关系,构建了智能化掘进工作面数字 孪生体模型,该模型由人员智能体、设备智能体、巷道智能体及巷道环境智能体组成,实现掘进工作 面“人员-设备-巷道-环境”协同作业过程的高呈现性描述。 引入服役状态离散化和事件驱动机 制,提出了面向掘进工作面设备智能体的离散逻辑模型构建方法,并详细阐述了潜在事件监测、事 件提取、状态离散化、状态演变动力学建模和事件驱动的状态跃迁 5 个建模步骤,通过研究掘进工 作面并行作业过程中单智能体和多智能体的状态跃迁机制,实现了掘进工作面几何-物理模型与 离散逻辑模型的有机融合,在数字空间融合为一个高忠实度的掘进工作面虚拟模型。 在此基础上, 引入平行控制理论,构建了基于数字孪生体与物理系统的掘进工作面平行智能控制架构,并将数字 孪生体解构为描述子系统、预测子系统和引导子系统,实现数字孪生体与视觉定位、碰撞检测和掘 进控制等计算推理模型的结合;利用虚拟仿真技术预测掘进工作面的状态变化趋势,寻求最优控制 的安全边界,使数字掘进形成的优化决策辅助物理掘进控制,最终达到数字孪生体与物理实体智能 协同、共智互驱的目标。 以掘进工作面成形截割控制中的截割头与巷道碰撞检测为例,对比了基于 视觉反馈的成形截割物理控制逻辑和基于虚实交互融合的平行智能控制逻辑,形成了掘进工作面 成形截割远程智能控制状态跃迁机制,有效提升了掘进工作面“人员-设备-巷道-环境”全要素控 制能力,为掘进工作面的巷道近程或地面远程智能控制提供了新的实施路径。

     

    Abstract: Due to the harsh environment of coal mine heading face,the intelligent control in roadway or at remote sur⁃ face depends on the interactive collaboration of operators,equipment,roadway,and surrounding in cyber⁃physical space. The digital twin of heading face is important for integrating virtual excavation and physical excavation. Consid⁃ ering the demands of the virtual⁃real interactive control,a digital twin model of intelligent heading face is construc⁃ ted to achieve a high⁃fidelity description for the collaborative operation process. It is done by analyzing the static char⁃ acteristics,dynamic characteristics,behavior rules,and the interaction of heterogeneous elements in the excavation face,which consists of operator agent,equipment agent,the agents of the roadway and its surrounding. The control state discretization and event⁃driven mechanism are introduced to construct the discrete logic model of the equipment agent,and the five modeling steps of potential event monitoring,event extraction,state discretization,state evolution dy⁃ namics modeling, and event⁃driven state jumping are elaborated. The state transition mechanism of single⁃agent and multi⁃agent in the parallel operation process is explored to realize the integration of the geo⁃metric⁃physical model and discrete logical model of the heading face,which is a high⁃fidelity virtual model of the heading face in digital space. Furthermore,the parallel control theory is introduced to construct a parallel intelligent control architecture of the heading face based on its digital twin and the physical system. This architecture deconstructs the digital twin into the description subsystem,prediction subsystem,and guidance subsystem for integrating digital twins with the nu⁃ merical computational models of visual positioning,collision detection,and excavation control. The safety boundary of optimal control is determined by virtual simulation technology to predict the trend of state changes in the heading face and assist physical excavation control, which ultimately achieves the requirements of parallel intelligent control between the digital twin and the physical entity. Taking the trajectory control of the roadheader’s cutting head as an example,the visual⁃feedback⁃based physical control logic is compared with the digital⁃physical⁃fusion⁃based parallel intelligent control logic. Moreover,the mechanism of intelligent remote control state transition for the shape⁃cutting of heading face is formed, which improves the ability to control all elements at the heading face, and the pro⁃ posed method provides a new implementation path for the intelligent control in roadway or at remote surface.

     

/

返回文章
返回