Citation: | GAO Chao,TIAN Guocan,XU Naizhong,et al. Additional stress transfer model of double layer dielectric foundation on thin topsoil covered area[J]. Journal of China Coal Society,2024,49(11):4365−4376. DOI: 10.13225/j.cnki.jccs.2023.0988 |
When constructing some buildings on the surface of mine goaf, the additional foundation stress may cause the activation of the stable structure in goaf, and in turn the residual movement and deformation of surface may affect the safety of buildings. In view of the few and imperfect models for calculating the additional stress and the depth of load effect on thin topsoil layer area, it is necessary to further investigate the additional stress transfer model of double layer elastic medium foundation from the perspective of simple calculation process, fewer parameters and easy access. Firstly, the foundation of thin topsoil area is regarded as the upper layer with thin thickness and weak mechanical strength, and the lower layer is the rock layer with larger thickness and high mechanical strength. Secondly, based on the Boussinesp elastic solution, it is assumed that each layer of the double-layered foundation is a transversely isotropic elastomer and there is no change of kinetic energy during the propagation of additional stress in the foundation. Thirdly, based on the conservation of elastic strain energy and the balance condition of vertical additional stress between the micro cell topsoil layer and bedrock layer on the interface of rock and soil layer, the balance equation is established, and each component of the balance equation is solved and simplified in its integral domain with help of Matlab. The equation for solving the additional stress under the center point of foundation with rectangular uniform load and circular uniform load in thin surface soil layer is derived. Then, according to the stability analysis method of goaf under the influence of additional stress of building foundation, an analysis software of the influence of proposed construction project on the stability of goaf is written using the C# language, which realizes the scientific and efficient calculation of the additional stress of foundation and the stability evaluation of goaf. The model for solving additional stress of double layer medium foundation is verified and the calculation results are compared with those of the widely used homogeneous medium model. Finally, the effect of parameters E1, μ1 and E2, μ2 on additional stress and depth of foundation are analyzed. Results show that the additional stress transfer model of double layer medium foundation with thin topsoil area is simple to be solved and can be used to guide the comprehensive utilization of mining subsidence area. For the coal mining subsidence area with thin topsoil layer, the vertical additional stress of foundation attenuates to a certain extent in the process of propagation in topsoil layer. Compared with homogeneous medium, the depth of additional stress on the foundation of double layer medium decreases by 5.3%−10.3%. The higher ratio of elastic modulus E2/E1 between bedrock and topsoil layer is, the more obvious attenuation of additional stress along the depth direction in bedrock is, and the smaller transfer depth is. Additional stress is less sensitive to the Poisson's ratio of topsoil and bedrock, but the smaller μ1/μ2 ratio, the smaller additional stress and the smaller the transfer depth in bedrock.
[1] |
何国清,杨伦,凌赓娣,等. 矿山开采沉陷学[M]. 徐州:中国矿业大学出版社,1991.
|
[2] |
韩科明,李凤明. 采煤沉陷区稳定性模糊综合评判[J]. 煤炭学报,2009,34(12):1616−1621. doi: 10.3321/j.issn:0253-9993.2009.12.006
HAN Keming, LI Fengming. Fuzzy comprehensive evaluation on stability of mining subsidence area[J]. Journal of China Coal Society,2009,34(12):1616−1621. doi: 10.3321/j.issn:0253-9993.2009.12.006
|
[3] |
谭勇强,采煤沉陷区治理与棚户区改造中沉陷土地的利用[J]. 煤矿开采,2008,13(2):1−5.
TAN Yongqiang. Land utilization in control of coal mining areas and reconstruction of squatter settlement [J]. Coal Mining Technology, 2008, 13(2):1−5.
|
[4] |
陈绍杰,张立波,李振华,等. 采煤沉陷区土地建筑利用研究进展与展望[J]. 绿色矿山,2023,1(1):101−118.
CHEN Shaojie, ZHANG Libo, LI Zhenhua, et al. Research progress and prospect of building utilization in coal mining subsidence areas[J]. Journal of Green Mine,2023,1(1):101−118.
|
[5] |
陈希哲,叶菁. 土力学地基基础[M]. 北京:清华大学出版社,2013.
|
[6] |
顾晓鲁,钱鸿缙,刘惠珊,等. 地基与基础[M]. 北京:中国建筑工业出版社,1993.
|
[7] |
张永波,孙雅洁,卢正伟,等. 老采空区建筑地基稳定性评价理论与方法[M]. 北京:中国建筑工业出版社,2006.
|
[8] |
陈敬虞. 层状半空间体弹塑性力学分析[J]. 宁夏工学院学报(自然科学版),1997,9(3):31−33.
CHEN Jingyu. Analysis of the stratified half space’s elasto-plasticity[J]. Journal of Ningxia Institute of Technology (Natural Science),1997,9(3):31−33.
|
[9] |
汤连生,林沛元,吴科,等. 交通荷载下层状路基动附加应力的弹性计算模型[J]. 岩石力学与工程学报,2009,28(11):2208−2214. doi: 10.3321/j.issn:1000-6915.2009.11.007
TANG Liansheng, LIN Peiyuan, WU Ke, et al. Elastic calculation model for dynamic additional stresses in layered subgrade under traffic load[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(11):2208−2214. doi: 10.3321/j.issn:1000-6915.2009.11.007
|
[10] |
顿志林,刘干斌,苌向阳. 层状横观各向同性地基轴对称问题的位移解法[J]. 焦作工学院学报(自然科学版),2002,21(6):420−426.
DUN Zhilin, LIU Ganbin, CHANG Xiangyang. Displacement function method of axisymmetrical problem with transversely isotropic layers[J]. Journal of Jiaozuo Institute of Technology,2002,21(6):420−426.
|
[11] |
蒋红英,苗天德,鲁进步. 二维颗粒堆中力传递的一个概率模型[J]. 岩土工程学报,2006,28(7):881−885. doi: 10.3321/j.issn:1000-4548.2006.07.014
JIANG Hongying, MIAO Tiande, LU Jinbu. A probabilistic model for force transmission in two dimensional granular packs[J]. Chinese Journal of Geotechnical Engineering,2006,28(7):881−885. doi: 10.3321/j.issn:1000-4548.2006.07.014
|
[12] |
廖智强,刘根保. 附加应力的概率式解答[J]. 岩土力学,2015,36(8):2223−2227.
LIAO Zhiqiang, LIU Genbao. Probabilistic solution to additional stress[J]. Rock and Soil Mechanics,2015,36(8):2223−2227.
|
[13] |
李婕,张学民,顿志林,等. 横观各向同性地基空间问题的位移函数解法[J]. 岩土工程学报,2007,29(1):137−142. doi: 10.3321/j.issn:1000-4548.2007.01.024
LI Jie, ZHANG Xuemin, DUN Zhilin, et al. Displacement function method of space problem for transversely isotropic foundation[J]. Chinese Journal of Geotechnical Engineering,2007,29(1):137−142. doi: 10.3321/j.issn:1000-4548.2007.01.024
|
[14] |
王有凯,龚耀清. 任意荷载作用下层状横观各向同性弹性地基的直角坐标解[J]. 工程力学,2006,23(5):9−13,19. doi: 10.3969/j.issn.1000-4750.2006.05.002
WANG Youkai, GONG Yaoqing. Analytical solution of transversely isotropic elastic multilayered subgrade under arbitrary loading in rectangular coordinates[J]. Engineering Mechanics,2006,23(5):9−13,19. doi: 10.3969/j.issn.1000-4750.2006.05.002
|
[15] |
韩泽军,林皋,周小文. 三维横观各向同性层状地基任意点格林函数求解[J]. 岩土工程学报,2016,38(12):2218−2225. doi: 10.11779/CJGE201612010
HAN Zejun, LIN Gao, ZHOU Xiaowen. Solution to Green’s functions for arbitray points in 3D cross-anisotropic multi-layered soil[J]. Chinese Journal of Geotechnical Engineering,2016,38(12):2218−2225. doi: 10.11779/CJGE201612010
|
[16] |
邱明兵,高文生. Mindlin解积分的方形荷载竖向应力系数初等解[J]. 应用力学学报,2021,38(2):655−662. doi: 10.11776/cjam.38.02.D113
QIU Mingbing, GAO Wensheng. Elementary solution of vertical stress coefficient of square load based on Mindlin solution integration[J]. Chinese Journal of Applied Mechanics,2021,38(2):655−662. doi: 10.11776/cjam.38.02.D113
|
[17] |
艾智勇,曾凯,曾文泽. 层状地基三维问题的解析层元解[J]. 岩土工程学报,2012,34(6):1154−1158.
AI Zhiyong, ZENG Kai, ZENG Wenze. Analytical layer-element solution for three-dimensional problem of multilayered foundation[J]. Chinese Journal of Geotechnical Engineering,2012,34(6):1154−1158.
|
[18] |
艾智勇,杨轲舒. 横观各向同性层状地基上弹性矩形板的参数研究[J]. 岩土工程学报,2016,38(8):1442−1446. doi: 10.11779/CJGE201608011
AI Zhiyong, YANG Keshu. Parametric study on an elastic rectangle plate on transversely isotropic multi-layered soils[J]. Chinese Journal of Geotechnical Engineering,2016,38(8):1442−1446. doi: 10.11779/CJGE201608011
|
[19] |
武崇福,魏超,乔菲菲. 既有上部建筑荷载下盾构施工引起土体附加应力分析[J]. 岩石力学与工程学报,2018,37(7):1708−1721.
WU Chongfu, WEI Chao, QIAO Feifei. Analysis of additional soil stress caused by shield construction under existing superstructure loads[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(7):1708−1721.
|
[20] |
朱建群,李明东. 土力学与地基基础[M]. 北京:中国建筑工业出版社,2017.
|
[21] |
徐芝纶. 弹性力学−下册[M]. 北京:高等教育出版社,2006.
|
[22] |
刘保柱,苏彦华,张宏林. MATLAB 7.0从入门到精通[M]. 北京:人民邮电出版社,2010.
|
[23] |
罗华飞. MATLAB GUI设计学习手记[M]. 北京:北京航空航天大学出版社,2014.
|
[24] |
陈宝国. C#程序设计语言[M]. 北京:机械工业出版社,2011.
|
[25] |
滕永海,张俊英. 老采空区地基稳定性评价[J]. 煤炭学报,1997,22(5):58−62.
TENG Yonghai, ZHANG Junying. Evaluation on stability of building foundation over goafs[J]. Journal of China Coal Society,1997,22(5):58−62.
|
[26] |
陈绍杰,祝伟豪,汪锋,等. 建筑荷载下浅埋长壁老采空区地表移动变形规律与机理[J]. 煤炭学报,2022,47(12):4403−4416.
CHEN Shaojie, ZHU Weihao, WANG Feng, et al. Law and mechanism of surface movement and deformation above shallow longwall abandoned gob under building load[J]. Journal of China Coal Society,2022,47(12):4403−4416.
|
[27] |
高超,田国灿,徐乃忠. 沉陷区地基稳定性评价机理及基于C#的软件开发与应用[J]. 煤矿开采,2017(5):5−8,12.
GAO Chao, TIAN Guocan, XU Naizhong. Evaluate principle of foundation stability in subsidence area and software development and application based on C# language[J]. Coal Mining Technology,2017(5):5−8,12.
|
[28] |
郭文兵,杨伟强,马志宝,等. 建筑载荷作用下采空区覆岩结构稳定性判据及应用[J]. 煤炭学报,2022,47(6):2207−2217.
GUO Wenbing, YANG Weiqiang, MA Zhibao, et al. Stability criterion of overburden structure above goaf under building load and its application[J]. Journal of China Coal Society,2022,47(6):2207−2217.
|
[29] |
胡炳南,郭文砚. 采煤沉陷区损害防治对策与技术发展方向[J]. 煤炭科学技术,2022,50(5):21−29.
HU Bingnan, GUO Wenyan. Counter measures and technical development direction of damage prevention in coal mining subsidence area[J]. Coal Science and Technology,2022,50(5):21−29.
|
[30] |
国家安全监管总局,国家煤矿安监局,国家能源局,等. 建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规范[M]. 北京:煤炭工业出版社,2017.
|