FU Yukai, SUN Zhiyong, JU Wenjun. Experimental study on static and dynamic mechanical properties of bolting wire mesh in rock burst roadway[J]. Journal of China Coal Society, 2019, (7). DOI: 10.13225/j.cnki.jccs.2018.1392
Citation: FU Yukai, SUN Zhiyong, JU Wenjun. Experimental study on static and dynamic mechanical properties of bolting wire mesh in rock burst roadway[J]. Journal of China Coal Society, 2019, (7). DOI: 10.13225/j.cnki.jccs.2018.1392

Experimental study on static and dynamic mechanical properties of bolting wire mesh in rock burst roadway

More Information
  • Available Online: April 10, 2023
  • Published Date: July 30, 2019
  • In order to reveal the static and dynamic mechanical properties of metal mesh commonly used in rock burst roadway,and provide a design basis for the selection of metal mesh in rock burst roadway,the mechanical properties of longitude and latitude mesh,diamond mesh and reinforcing bar mesh are tested by using a special static and dynamic mechanical testing device,the stress characteristics and deformation of the metal mesh under static and dynamic loads are analyzed. The experimental results show that the maximum deflections of diamond mesh,longitude and latitude mesh and reinforcing bar mesh are 240,236 and 225 mm,respectively. The maximum load-carrying capacities of three kinds of metal mesh are 20,16. 2 and 77 kN. On the whole,the maximum deflection of three kinds of metal meshes is basically the same,but the load-bearing rate is different greatly,the load-bearing rate of the reinforcing bar mesh is the largest,followed by the longitude and latitude mesh and the diamond mesh. Under dynamic load,the maximum energy absorption capacities of diamond mesh,longitude and latitude mesh and reinforcing bar mesh are 1 743,938 and 2 010 J,and the maximum deflections are 350,420 and 360 mm,respectively. On the whole,the steel mesh has the largest energy absorption capacity and moderate deflection,followed by the diamond mesh,while the deflection is the smal- lest. Whether under static or dynamic load,the initial stiffness of diamond mesh is low and its bearing efficiency is slow. However,the diamond mesh has uniform force,can bear larger static and dynamic loads,and is not easy to break around the binder. The hook connection has good bearing and buffering capacity. The main drawbacks of the diamond mesh are that the bearing efficiency is slow and the supporting stiffness is too low,the main way to improve the sup- porting effect of diamond mesh is to increase the initial tension force. On the contrary,the stiffness of the longitude and latitude mesh is higher and the load-carrying efficiency is faster,but the strength is relatively lower,which is prone to the failure of the warp and latitude dislocation. When the longitude and latitude mesh is deformed, it is unevenly stressed,and the connection is easy to break,and the force of the wire is poor. In order to improve the supporting effect of longitude and latitude mesh, it is necessary to improve the binding strength between the longitude and latitude mesh. The reinforcing bar mesh has high initial stiffness,high strength and strong energy absorption capacity,but the weakness of the steel mesh is that the strength cannot be fully utilized,especially the low strength of the welded joints of the longitude and latitude mesh and the surrounding bindings,which restricts the support effect of the steel mesh. In order to improve its supporting effect,the strength of welding joint and binding should be increased.
  • Related Articles

    [1]ZHAO Jing, YANG Benchao, WEI Xiaolin, NI Wenxiang, QIAO Yu, LOU Chun. Release characteristics of different alkali metal salts in Zhundong coal under O2/CO2 combustion atmosphere based on FES technology[J]. Journal of China Coal Society, 2024, 49(7): 3216-3224. DOI: 10.13225/j.cnki.jccs.2023.1544
    [2]YUAN Guiyang, GAO Fuqiang, WANG Tao, LI Jianzhong, WANG Xiaoqing. A novel approach for applying active surface pre-stress on surrounding rocks of roadways by backfilling behind surface support[J]. Journal of China Coal Society, 2024, 49(5): 2222-2230. DOI: 10.13225/j.cnki.jccs.2023.0566
    [3]YUAN Guiyang.GAO Fuqiang.LOU Jinfu.LI Jianzhong.WANG Xiaoqing, . Experimental study on mechanical properties and force transfer mechanism of bolt supported metal mesh[J]. Journal of China Coal Society, 2022, 47(4): 1512-1522.
    [4]WU Yongzheng, FU Yukai, CHU Xiaowei, SUN Zhuoyue. Experimental study on static and dynamic mechanical properties of composite structure of anchor plate and cushion[J]. Journal of China Coal Society, 2022, 47(2): 662-671.
    [5]YUAN Guiyang, SUN Zhiyong, LI Jianzhong. Experimental study on reinforcement effect of bolt support composite members on reinforced mesh[J]. Journal of China Coal Society, 2020, 45(2). DOI: 10.13225/j.cnki.jccs.2019.1265
    [6]WANG Aiwen, GAO Qianshu, DAI Lianpeng, PAN Yishan, ZHANG Jianzuo, CHEN Jianqiang. Static and dynamic performance of rebar bolts and its adaptability under impact loading[J]. Journal of China Coal Society, 2018, (11). DOI: 10.13225/j.cnki.jccs.2018.8020
    [7]DAI Lian-peng, PAN Yi-shan, WANG Ai-wen. Deformation and energy-absorption properties of axial splitting components and its primary application[J]. Journal of China Coal Society, 2017, (7). DOI: 10.13225/j.cnki.jccs.2016.1175
    [8]HUANG Zi-wei, HAN Xue-feng, LIAN Xiao-yong, SHI Xiao-dong, ZHOU Chen-chen. Application of impact-constant resistance anchor support theory in rock burst mine[J]. Journal of China Coal Society, 2016, 41(S1): 21-28. DOI: 10.13225/j.cnki.jccs.2015.0779
    [9]FU Yu-kai, WU Yong-zheng, JU Wen-jun, HE Jie. Response and impact mechanism of rock bolt under lateral dynamic impact load[J]. Journal of China Coal Society, 2016, (7). DOI: 10.13225/j.cnki.jccs.2015.1618
  • Cited by

    Periodical cited type(15)

    1. 田正,胡智星,张重发,张新鹏,种磊刚,张开玉,孙宁旭. 动载扰动下特厚煤层巷道破坏机理及其控制技术研究. 煤炭技术. 2024(03): 26-31 .
    2. 苑新亮,吴拥政,周鹏赫. 锚杆支护网片动载力学性能试验研究. 煤炭工程. 2024(04): 119-124 .
    3. 邓鹏海,刘泉声. 基于FDEM数值模拟的软岩大变形预测及新分级研究. 中国公路学报. 2024(11): 164-180 .
    4. 钱万学,侯挺,江宗瑜. 象山矿软岩巷道锚网协同承载支护技术应用. 煤. 2023(02): 42-45 .
    5. 吴拥政,付玉凯,周鹏赫,山世昌. 30 000 J多功能落锤冲击试验机研制及应用. 煤炭学报. 2023(02): 623-635 . 本站查看
    6. 田鹏. 煤矿金属网力学性能及其匹配性试验研究. 煤. 2023(06): 19-24 .
    7. 王宝华,隋纪胜. 赵家寨矿底抽巷锚网喷支护参数设计及应用. 煤炭技术. 2023(11): 98-102 .
    8. 杜学领. 矿用锚杆物理实验研究方法述评. 煤矿安全. 2023(12): 97-115 .
    9. 原贵阳,高富强,娄金福,李建忠,王晓卿. 锚杆支护金属网力学性能及传力机制试验研究. 煤炭学报. 2022(04): 1512-1522 . 本站查看
    10. 郭良银,安龙. 新城金矿深部全断面锚网喷支护技术研究. 中国矿业. 2022(07): 132-136 .
    11. 何杰,吴拥政,付玉凯. 冲击载荷下锚杆护表构件力学响应规律研究. 采矿与安全工程学报. 2021(03): 556-564 .
    12. 高明仕,贺永亮,徐东,俞鑫. 冲击地压巷道减隔震技术原理及应用. 煤炭科学技术. 2021(06): 53-60 .
    13. 刘海全,朱敬,王建. 特厚煤层回采巷道顶煤稳定特征研究. 煤炭科技. 2021(04): 62-68 .
    14. 郭现伟,张云宁,白冰,岳博. 济宁三号煤矿坚硬顶板条件快速掘进支护参数优化. 煤炭科技. 2021(06): 7-14+20 .
    15. 付玉凯,鞠文君,吴拥政,陈建强,焦建康,刘昆轮. 深部回采巷道锚杆(索)防冲吸能机理与实践. 煤炭学报. 2020(S2): 609-617 . 本站查看

    Other cited types(10)

Catalog

    Article views (961) PDF downloads (340) Cited by(25)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close