WANG Pengfei,NIU Yifan,CHEN Kehang,et al. Field survey on the evolution of main ground cracks under condition of forced hard roof caving in mining ultra-thick coal seams under shallow overburden[J]. Journal of China Coal Society,2023,48(10):3674−3687. DOI: 10.13225/j.cnki.jccs.2022.1651
Citation: WANG Pengfei,NIU Yifan,CHEN Kehang,et al. Field survey on the evolution of main ground cracks under condition of forced hard roof caving in mining ultra-thick coal seams under shallow overburden[J]. Journal of China Coal Society,2023,48(10):3674−3687. DOI: 10.13225/j.cnki.jccs.2022.1651

Field survey on the evolution of main ground cracks under condition of forced hard roof caving in mining ultra-thick coal seams under shallow overburden

More Information
  • Received Date: November 14, 2022
  • Revised Date: February 20, 2023
  • Available Online: October 16, 2023
  • The Yellow River Basin is an important ecological barrier and also an important coal base concentration area in China. The contradiction between ecological protection and coal mining is prominent. Under the conditions of typical shallow overburden, extra-thick coal seam and hard roof in the Northern Jinbei coal base, the forced roof caving method is generally adopted, but the research on the evolution of surface cracks is rare, which restricts the coordination of ecological protection and coal mining in such mines. This paper presents a field meas-urement research on the evolution of main ground fractures under such conditions. The main conclusions are: ① The cracks formed were mainly at the mining boundaries, which first stretched, then staggered up and down, and the upper and lower parts of the cracks were separated, and cavity appeared below the upper step. ② When the working face became “square”, the development of cracks at the all boundaries was similar. After “square”, the key strata was caved in a three-times distance of the cyclic blasting step (20 m), i.e., every three times of forced caving, 60 m, was the period of cyclic failure and collapse. The main ground fractures above the gate roads on both sides also developed in a “step” manner of 60 m. ③ The cracks right above the working face were smaller than other three sides in terms of crack width and altitude difference, and the closure speed changed once per cycle forced caving distance. ④ The ratio of mining depth to mining height was small and the topsoil was thin leading to the non-self-repairing large cracks at the mining boundary which has the most serious impact on surface. The fracture zone directly reached the surface. Most of the main cracks were inside the edge of the stope and the closure cycle were shorter, approximately 9 days. ⑤ The 110 and N00 method and split-level longwall mining without gate pillars can expand the uniform subsidence area and mitigate the boundary crack damage, which are good for healing from the root and saving investment.

  • [1]
    彭苏萍. 黄河流域煤矿区生态修复亟需重视[N]. 中国能源报,2020−09−21(16).

    PENG Suping. Ecological restoration of coal mine areas in the Yellow River Basin needs urgent attention[N]. China Energy News, 2020−09−21(16).
    [2]
    彭苏萍,毕银丽. 黄河流域煤矿区生态环境修复关键技术与战略思考[J]. 煤炭学报,2020,45(4):1211−1221.

    PENG Suping, BI Yinli. Strategic consideration and core technology about environmental ecological restoration in coal mine areas in the Yellow River basin of China[J]. Journal of China Coal Society,2020,45(4):1211−1221.
    [3]
    朱妍. 黄河流域煤矿水资源保护持续收紧[N]. 中国能源报,2021−01−25.

    ZHU Yan. Water resources protection for coal mines in the Yellow River Basin continued to tighten[N]. China Energy News. 2021−01−25
    [4]
    胡振琪,龙精华,王新静. 论煤矿区生态环境的自修复、自然修复和人工修复[J]. 煤炭学报,2014,39(8):1751−1757.

    HU Zhenqi, LONG Jinghua, WANG Xinjing. Self-healing, natural restoration and artificial restoration of ecological environment for coal mining[J]. Journal of China Coal Society,2014,39(8):1751−1757.
    [5]
    胡振琪,陈超. 风沙区井工煤炭开采对土地生态的影响及修复[J]. 矿业科学学报,2016,1(2):120−130.

    HU Zhenqi, CHEN Chao. Impact of underground coal mining on land ecology and its restoration in windy and sandy region[J]. Journal of Mining Science and Technology,2016,1(2):120−130.
    [6]
    王新静,胡振琪,胡青峰,等. 风沙区超大工作面开采土地损伤的演变与自修复特征[J]. 煤炭学报,2015,40(9):2166−2172.

    WANG Xinjing, HU Zhenqi, HU Qingfeng, et al. Evolution and self-healing characteristic of land ecological environment due to super-large coalface mining in windy and sandy region[J]. Journal of China Coal Society,2015,40(9):2166−2172
    [7]
    徐祝贺,李全生,李晓斌,等. 浅埋高强度开采覆岩结构演化及地表损伤研究[J]. 煤炭学报,2020,45(8):2728−2739.

    XU Zhuhe, LI Quansheng, LI Xiaobin, et al. Structural evolution of overburden and surface damage caused by high-in-tensity mining with shallow depth[J]. Journal of China Coal Society,2020,45(8):2728−2739.
    [8]
    胡青峰,崔希民,刘文锴,等. 特厚煤层重复开采覆岩与地表移动变形规律研究[J]. 采矿与岩层控制工程学报,2020,2(2):31−39.

    HU Qingfeng, CUI Ximin, LIU Wenkai, et al. Law of overburden and surface movement and deformation due to mining super thick coalseam [J]. Journal of Mining and Strata Control Engineering. 2020, 2(2):31−39.
    [9]
    卞正富,雷少刚,刘辉,等. 风积沙区超大工作面开采生态环境破坏过程与恢复对策[J]. 采矿与安全工程学报,2016,33(2):305−310.

    BIAN Zhengfu, LEI Shaogang, LIU Hui, et al. The process and countermeasures for ecological damage and restoration in coal mining area with super-size mining face at aeolian sandy site[J]. Journal of Mining & Safety Engineering,2016,33(2):305−310.
    [10]
    戴华阳. 岩层与地表移动变形量的时空关系及描述方法[J]. 煤炭学报,2018,43(S2):450−459.

    DAI Huayang. Mining subsidence variables and their time-space relationship description[J]. Journal of China Coal Society,2018,43(S2):450−459.
    [11]
    侯恩科,冯栋,谢晓深,等. 浅埋煤层沟道采动裂缝发育特征及治理方法研究[J]. 煤炭学报,2021,46(4):1297−1308.

    HOU Enke, FENG Dong, XIE Xiaoshen, et al. Study on development characteristics and treatment methods of mining sur-face cracks in shallow-buried coal seam gully[J]. Journal of China Coal Society,2021,46(4):1297−1308.
    [12]
    赵毅鑫,许多,孙波,等. 基于无人机红外遥感和边缘检测技术的采动地裂缝辨识研究[J]. 煤炭学报,2021,46(2):624−637.

    ZHAO Yixin, XU Duo, SUN Bo, et al. Investigation on ground fissure identification using UAV infrared remote sensing and edge detection technology[J]. Journal of China Coal Society,2021,46(2):624−637.
    [13]
    钱鸣高,许家林. 煤炭开采与岩层运动[J]. 煤炭学报,2019,44(4):973−984.

    QIAN Minggao, XU Jialin. Behavior of strata movement in coal mining[J]. Journal of China Coal Society,2019,44(4):973−984.
    [14]
    黄炳香,赵兴龙,陈树亮,等. 坚硬顶板水压致裂控制理论与成套技术[J]. 岩石力学与工程学报,2017,36(12):2954−2970.

    HUANG Bingxiang, ZHAO Xinglong, CHEN Shuliang, et al. Theory and technology of controlling hard roof with hydraulic fracturing in underground mining[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(12):2954−2970.
    [15]
    曹胜根,姜海军,王福海,等. 采场上覆坚硬岩层破断的数值模拟研究[J]. 采矿与安全工程学报,2013,30(2):205−210.

    CAO Shenggen, JIANG Haijun, WANG Fuhai, et al. Numerical simulation of overlying hard strata rupture in a coal face[J]. Journal of Minging and Safety Engineering,2013,30(2):205−210.
    [16]
    大同煤矿集团有限责任公司. 大同煤矿集团有限责任公司公司债券2016年年度报告摘要[E/OL]. (2017−04−28)[2023−02−14]. http://www.sse.com.cn/disclosure/bond/announcement/corporate/c/2907786313964666.pdf.
    [17]
    榆林市榆阳区人民政府办公室. 榆阳区金鸡滩镇发生2.6级地震,系煤矿采空区顶板周期性来压正常垮落,无人员伤亡[E/OL]. (2020−12−15)[2023−02−14]. http://www.yuyang.gov.cn/xwzx/yyyw/1338776662036189186.html.
    [18]
    胡守平,李纯宝. 坚硬顶板塌陷机理探讨[J]. 山东煤炭科技,2008(6):86−87.

    HU Shouping, LI Chunbao. Study on the collapse mechanism of the hard roof rocks[J]. Shangdong Coal Science and Technology,2008(6):86−87.
    [19]
    侯志鹰,于斌,周建峰. 大同矿区坚硬顶板大面积整体切冒分析[J]. 煤矿开采,2008(1):62−65,81.

    HOU Zhiying, YU Bin, ZHOU Jianfeng. Analysis of total collapse of hard roof in Datong Mined Area[J]. Coal Minging Technology,2008(1):62−65,81.
    [20]
    余学义,刘智,牛宗涛,等. 采场上覆厚硬岩层的结构稳定性分析[J]. 煤田地质与勘探,2007,35(5):38−41.

    YU Xueyi, LIU Zhi, NIU Zhongtao, et al. Analysis on the structure stability of hard and massive overlying strata[J]. Coal Geology and Exploration,2007,35(5):38−41.
    [21]
    赵通,刘长友,弓培林. 近距离巨厚坚硬岩层破断结构及分区控制[J]. 采矿与安全工程学报,2019,36(4):719−727.

    ZHAO Tong, LIU Changyou, GONG Peilin. Roof Fractured structure and zonal control of super thick and hard close rock[J]. Journal of Mining and Safety Engineering,2019,36(4):719−727.
    [22]
    刘辉,邓喀中,雷少刚,等. 采动地裂缝动态发育规律及治理标准探讨[J]. 采矿与安全工程学报,2017,34(5):884−890.

    LIU Hui, DENG Kazhong, LEI Shaogang, et al. Discussion on dynamic development law and treatment standards of cracks in mining ground[J]. Journal of Mining & Safety Engineering,2017,34(5):884−890.
    [23]
    钱鸣高,石平五,许家林. 矿山压力与岩层控制[M]. 徐州:中国矿业大学出版社,2010:203−233.
    [24]
    钱鸣高,缪协兴,许家林. 岩层控制中的关键层理论研究[J]. 煤炭学报,1996,21(3):225−230.

    QIAN Minggao, MIAO Xiexing, XU Jialin. Theoretical of key stratum in ground control[J]. Journal of China Coal Society,1996,21(3):225−230.
    [25]
    何满潮,王亚军,杨军,等. 切顶卸压无煤柱自成巷开采与常规开采应力场分布特征对比分析[J]. 煤炭学报,2018,43(3):626−637.

    HE Manchao, WANG Yajun, YANG Jun, et al. Comparative analysis on stress field distributions in roof cutting non-pillar mining method and conventional min-ing method[J]. Journal of China Coal Society,2018,43(3):626−637.
    [26]
    王朋飞,刘佳男,冯国瑞. “负煤柱”长壁工作面底板应力分布及破坏特征[J]. 岩石力学与工程学报,2023,42(1):194−211.

    WANG Pengfei, LIU Jianan, FENG Guorui. Stress distribution and failure characteristics of the bottom plate of the “negative coal pillar” longwall working face[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(1):194−211.
    [27]
    王朋飞,赵景礼,王志强,等. 非充分采动采空区与煤岩柱(体)耦合作用机制及应用[J]. 岩石力学与工程学报,2017,36(5):1185−1200.

    WANG Pengfei, ZHAO Jingli, WANG Zhiqiang. Mechanism of gob-pillar interaction for subcritical panels and its application[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(5):1185−1200.
  • Cited by

    Periodical cited type(9)

    1. 彭苏萍,毕银丽. 西部干旱半干旱煤矿区生态环境损伤特征及修复机制. 煤炭学报. 2024(01): 57-64 . 本站查看
    2. 马飞. 特厚煤层综放开采小煤柱巷道支护技术研究. 机械管理开发. 2024(03): 266-268 .
    3. 刘栋永. 人工智能在水文地质调查过程中的战略意义探索. 世界有色金属. 2024(10): 166-168 .
    4. 马洪波. 深部特厚煤层开采过程中地表变形特征. 陕西煤炭. 2024(09): 6-10 .
    5. 刘立仁,郭佳策,陈博,邢真强,鹿文勇. 深部煤矿泡沫充填复合承载结构强度特征及应用研究. 中国煤炭. 2024(08): 78-86 .
    6. 郭文兵,葛志博,胡玉杭,王宇,胡超群,丘宝汶. 厚松散层薄基岩综放开采覆岩破坏与地裂缝发育规律. 矿业科学学报. 2024(05): 723-736 .
    7. 徐建. 掩护式前部放顶煤液压支架选型设计与可靠性研究. 煤矿机械. 2024(12): 20-23 .
    8. 王文才,高峰,王大伟. 浅埋近距离煤层主关键层破断下覆岩运移演化规律. 内蒙古科技大学学报. 2024(04): 321-325 .
    9. 兰舟,王培涛,王春贤,张艺山,张博,黄铂然,马驰. 石碌铁矿北一采区露天转地下开采沉陷机理研究. 有色金属工程. 2023(10): 105-117 .

    Other cited types(2)

Catalog

    Article views (224) PDF downloads (120) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close