CHENG Hua,GUO Longhui,YAO Zhishu,et al. Research on the gas-liquid-solid coupled slag discharge flow field and optimization of cutterhead slag suction port in shaft drilling[J]. Journal of China Coal Society,2024,49(1):426−441. DOI: 10.13225/j.cnki.jccs.2023.0939
Citation: CHENG Hua,GUO Longhui,YAO Zhishu,et al. Research on the gas-liquid-solid coupled slag discharge flow field and optimization of cutterhead slag suction port in shaft drilling[J]. Journal of China Coal Society,2024,49(1):426−441. DOI: 10.13225/j.cnki.jccs.2023.0939

Research on the gas-liquid-solid coupled slag discharge flow field and optimization of cutterhead slag suction port in shaft drilling

More Information
  • Received Date: October 22, 2023
  • Revised Date: December 04, 2023
  • Available Online: March 31, 2024
  • Aiming at the problems of gas lift reverse circulation shaft washing slag discharge and low drilling efficiency in the application of vertical shaft drilling method in the Jurassic strata coal mines in western China, taking ϕ4.2 m advanced drilling of central return air shaft in the Kekegai coal mine as the engineering background, based on the CFD-DEM (computational fluid dynamics and discrete element method coupling) research method, a gas-liquid-solid multiphase coupling slag discharge numerical model is established, which reveals the velocity and pressure distribution law of the flow field in the slag discharge pipe and the bottom hole. Based on the self-developed gas lift reverse circulation slag discharge test device, the correctness of the flow field distribution is verified by PIV (Particle Image Velocimetry) test technology. The evaluation index and method of optimizing cutter head suction port are put forward. The number, length-diameter ratio, area ratio and total area ratio of slag suction outlets are optimized. The best way and related parameters of cutter head suction port arrangement of advanced bit are optimized. The effects of main factors such as bit speed, gas injection rate, submerged ratio of air duct and mud viscosity on slag discharge flow field are discussed. The research results show that ① the fluid in the slag discharge pipe mainly moves in the axial direction, and when passing through the gas injection end, the velocity increases sharply. The migration of bottom hole fluid is mainly horizontal flow, and the vertical upward flow of fluid only exists near the slag suction port. The horizontal flow at the bottom of the shaft is mainly tangential flow, and the radial flow is obvious only on both sides of the slag suction port, and it is far away from the slag suction port, so the runoff speed is small and it is easy to produce cuttings deposition. ② When the number of slag suction ports of cutter head is 2, the length-diameter ratio is 0.4, the area ratio is 1, and the total area ratio is 1.94%, the layout of slag suction ports is the best, and the slag removal rate is increased by 66% compared with the current layout of slag suction ports. ③ Increasing the bit speed can significantly enhance the adsorption of the slag suction port. The gas injection rate and the submerged ratio of the air duct are positively correlated with the axial velocity of the fluid in the bottom hole and the slag discharge pipe. The mud with low viscosity and low density is easy to obtain high return velocity, but its rock carrying capacity is poor. The research results can provide a useful theoretical reference for solving the technical problems of washing, slag removal and low drilling efficiency of deep and large vertical shaft drilling in the Jurassic strata.

  • [1]
    刘志强,宋朝阳,纪洪广,等. 深部矿产资源开采矿井建设模式及其关键技术[J]. 煤炭学报,2021,46(3):826−845.

    LIU Zhiqiang, SONG Chaoyang, JI Hongguang, et al. Construction mode and key technology of mining shaft engineering for deep mineral resources[J]. Journal of China Coal Society,2021,46(3):826−845.
    [2]
    程桦,唐彬,唐永志,等. 深井巷道全断面硬岩掘进机及其快速施工关键技术[J]. 煤炭学报,2020,45(9):3314−3324.

    CHNEG Hua, TANG Bin, TANG Yongzhi, et al. Full face tunnel boring machine for deep-buried roadways and its key rapid excavation technologies[J]. Journal of China Coal Society,2020,45(9):3314−3324.
    [3]
    孙利辉,纪洪广,杨本生. 西部典型矿区弱胶结地层岩石的物理力学性能特征[J]. 煤炭学报,2019,44(3):866−874.

    SUN Lihui, JI Hongguang, YANG Bensheng. Physical and mechanical characteristic of rocks with weakly cemented strata in Western representative mining area[J]. Journal of China Coal Society,2019,44(3):866−874.
    [4]
    刘志强,陈湘生,蔡美峰,等. 我国大直径钻井技术装备发展的挑战与思考[J]. 中国工程科学,2022,24(2):132−139. doi: 10.15302/J-SSCAE-2022.02.018

    LIU Zhiqiang, CHEN Xiangsheng, CAI Meifeng, et al. Challenges and thoughts on the development of large-diameter drilling technology and equipment[J]. Strategic Study of CAE,2022,24(2):132−139. doi: 10.15302/J-SSCAE-2022.02.018
    [5]
    姚直书,许永杰,程桦,等. 西部钻井法“一钻成井”新型高强复合井壁力学特性研究[J]. 煤炭学报,2023,48(12):4365−4379.

    YAO Zhishu, XU Yongjie, CHENG Hua, et al. Study on the mechanical properties of a new high-strength composite shaft lining for the “one drilling and forming process” by drilling method in western China[J]. Journal of China Coal Society,2023,48(12):4365−4379.
    [6]
    范京道, 封华, 宋朝阳, 等. 可可盖煤矿全矿井机械破岩智能化建井关键技术与装备[J]. 煤炭学报,2022,47(1):499−514.

    FAN Jingdao, FENG Hua, SONG Chaoyang , et al. Key technology and equipment of intelligent mine construction of whole mine mechanical rock breaking in Kekegai Coal Mine[J]. Journal of China Coal Society,2022,47(1):499−514.
    [7]
    洪伯潜. 钻井法凿井技术在我国的发展与应用[J]. 中国煤炭工业,1998(4):8−9.

    HONG Boqian. Development and application of drilling sinking technology in China[J]. China Coal Industry,1998(4):8−9.
    [8]
    姚直书,方玉,乔帅星,等. 孔隙型含水岩层钻井法凿井壁后充填技术研究[J]. 煤炭科学技术,2022,50(10):1−9.

    YAO Zhishu, FANG Yu, QIAO Shuaixing, et al. Research on backfill technology of drilling shaft sinking method in porous water-bearing rock stratum[J]. Coal Science and Technology,2022,50(10):1−9.
    [9]
    崔明远,刘锦玉,李翔宇,等. 钻井法凿井在我国西部地区的应用分析——以可可盖煤矿进风立井采用钻井法施工为例[J]. 建井技术,2022,43(5):67−70, 48.

    CUI Mingyuan, LIU Jinyu, LI Xiangyu, et al. Analysis on mine shaft drilling method applied to mine shaft sinking in western china area-taking the construction of air inlet shaft in kekegai coal mine as an example[J]. Mine Construction Technology,2022,43(5):67−70, 48.
    [10]
    程桦,郭龙辉,姚直书,等. 钻井法凿井气举反循环多相排渣运移规律及其洗井参数优化试验研究[J/OL]. 中国矿业大学学报:1−14[2023−08−02]. http://kns.cnki.net/kcms/detail/32.1152.TD.20230619.1100.002.html.

    CHENG Hua, GUO Longhui, YAO Zhishu, et al. Experimental study on transport law of multiphase slag discharge and optimization of well washing parameters in gas lift reverse circulation of drilling shaft sinking[J/OL]. Journal of China University of Mining & Technology:1−14[2023−08−02]. http://kns.cnki.net/kcms/detail/32.1152.TD.20230619.1100.002.html.
    [11]
    刘志强,宋朝阳,程守业,等. 基于重力排渣的大直径井筒钻掘技术与工艺体系研究[J]. 煤炭科学技术,2023,51(1):272−282.

    LIU Zhiqiang, SONG Chaoyang, CHENG Shouye, et al. Research on the technology and equipment system of large diameter shaft drilling based on gravity slagging[J]. Coal Science and Technology,2023,51(1):272−282.
    [12]
    伍晓龙,冯钰琦,杜垚森,等. 气举反循环双壁钻具流场仿真分析[J]. 钻探工程,2022,49(3):83−91.

    WU Xiaolong, FENG Yuqi, DU Yaosen, et al. Simulation analysis of the flow field of the air lift reverse circulation dual wall drill tool[J]. Drilling Engineering,2022,49(3):83−91.
    [13]
    夏敏,何建京,王占军,等. 竖井大直径钻头井底流场的数值模拟[J]. 矿山机械,2013,41(4):14−19.

    XIA Min, HE Jianjing, WANG Zhanjun, et al. Numerical simulation on flow field of shaft bottom drilled with large-diametered drill bit[J]. Mining & Processing Equipment,2013,41(4):14−19.
    [14]
    张永成,孙杰,王安山. 钻井技术[M]. 北京:煤炭工业出版社,2008:465−467.
    [15]
    黄志强,周已,单代伟,等. 潜孔钻头排屑槽布置方式对井底流场影响的研究[J]. 物探装备,2008(5):296−299.

    HUANG Zhiqiang, ZHOU Yi, SHAN Daiwei, et al. Study on influence of layout of DHT bits junk slot on hole-bottom flow field[J]. Equipment for Geophysical Prospecting,2008(5):296−299.
    [16]
    付孟雄,刘少伟,贾后省,等. 巷道下向小孔径锚固孔钻进产渣特征及高效钻头设计[J]. 煤炭学报,2022,47(6):2311−2325.

    FU Mengxiong, LIU Shaowei, JIA Houxing, et al. Fragments generation characteristics and design of a kind of efficient rock breaking bit during borehole drilling with small diameter at a downward angle of coal mine roadway[J]. Journal of China Coal Society,2022,47(6):2311−2325.
    [17]
    WALKER S, LI J. The Effects of particle size, fluid rheology, and pipe eccentricity on cuttings transport[J]. Society of Pettroleum Engineers,2000,60(7):55−65.
    [18]
    刘少伟,冯友良,董士举. 巷道底板锚固孔排渣影响因素分析及参数优化[J]. 中国矿业大学学报,2013,42(5):761−765.

    LIU Shaowei, FENG Youliang, DONG Shiju. Influence factors analysis and parameters optimization of deslagging in roadway floor anchoring boreholes[J]. Journal of China University of Mining & Technology,2013,42(5):761−765.
    [19]
    易振华,何龙飞,胡志海. 大直径贯通式潜孔锤局部气举反循环钻进工艺的试验研究[J]. 地质装备,2013,14(1):33−36.

    YI Zhenhua, HE Longfei, HU Zhihai. Experimental study on local gas lift reverse circulation drilling technology of large diameter through DTH hammer[J]. Equipment for Geotechnical Engineering,2013,14(1):33−36.
    [20]
    熊亮,张小连,熊菊秋,等. 大口径工程井气举反循环钻进效率影响因素初探[J]. 探矿工程,2014,41(5):42−45, 49.

    XIONG Liang, ZHANG Xiaolian, XIONG Juqiu, et al. Preliminary analysis on influence factors of air-lift reverse circulation drilling efficiency to large diameter engineering well[J]. Drilling Engineering,2014,41(5):42−45, 49.
    [21]
    范京道,魏东,汪青仓,等. 智能化建井理论技术研究与工程实践[J]. 煤炭学报,2023,48(1):470−483.

    FAN Jingdao, WEI Dong, WANG Qingcang, et al. Theory and practice of intelligent coal mine shaft excavation[J]. Journal of China Coal Society,2023,48(1):470−483.
    [22]
    YAN T, QU J, SUN X, et al. Numerical investigation on horizontal wellbore hole cleaning with a four-lobed drill pipe using CFD-DEM method[J]. Powder Technology,2020,375(1)::249−261.
    [23]
    王志亮,陈锟,张震,等. 新型钻杆的携岩原理研究与数值仿真分析[J]. 工程设计学报,2021,28(5):602−614.

    WANG Zhiliang, CHEN Kun, ZHANG Zhen, et al. Study on cuttings carrying principle and numerical simulation analysis of new drill pipe[J]. Chinese Journal of Engineering Design,2021,28(5):602−614.
    [24]
    王志亮,张震,周旺明,等. 页岩气井眼净化模拟研究及影响因素分析[J]. 石油机械,2021,49(7):23−30.

    WANG Zhiliang, ZHANG Zhen, ZHOU Wangming, et al. Shale gas wellbore cleaning simulation and influencing factors analysis[J]. China Petroleum Machinery,2021,49(7):23−30.
    [25]
    焦宁,王衍森,孟陈祥. 竖井掘进机空气洗井流场与携渣效率的数值模拟[J]. 煤炭学报,2020,45(S1):522−531.

    JIAO Ning, WANG Yansen, MENG Chenxiang. Numerical simulation on the flow field and slag carrying efficiency of air flush drilling for vertical shaft boring machine[J]. Journal of China Coal Society,2020,45(S1):522−531.
    [26]
    金丽娜. 反循环钻井合理注气参数的研究[D]. 大庆:大庆石油学院,2008:15−22.

    JIN Lina. Research on the reasonable gas injection parameters of the counter-circulation drilling[D]. Daqing:Daqing Petroleum Institute, 2008:15−22.
    [27]
    尹晓利,高洪军,殷亮. 大直径竖井钻井反循环洗井参数计算[J]. 矿山机械,2009,37(21):5−8.

    YIN Xiaoli, GAO Hongjun, YIN Liang. Anti-circulation flushing parameter calculation of the large-diameter shaft drilling[J]. Mining & Processing Equipment,2009,37(21):5−8.
  • Cited by

    Periodical cited type(22)

    1. 廖雅曼,蒋林,刘焕钊,颜俊杰,王振宇. 基于IEKF的快速三维激光惯导耦合SLAM算法. 武汉科技大学学报. 2025(01): 49-58 .
    2. 李丽. 基于激光SLAM的复杂场景智能机器人位置自标定研究. 激光杂志. 2025(01): 228-233 .
    3. 马庆禄,汪军豪,张杰,邹政. 激光雷达与惯性测量单元同步融合下的园区三维建图. 光学精密工程. 2024(03): 422-434 .
    4. 蒋美玲,唐力华,钟远生. 智能机器人在检验检测实验室的应用研究综述. 机电工程技术. 2024(02): 51-55 .
    5. 呙力平,谢卫容,李智慧. 激光雷达SLAM下移动机器人双目视觉全局定位. 激光杂志. 2024(04): 103-107 .
    6. 徐中华,张鑫,付信凯,崔智翔,江松. SLAM技术在矿井智能化的研究现状与应用进展. 安徽工业大学学报(自然科学版). 2024(03): 294-304 .
    7. 王力锋,刘抗英,姚源果,周万洋. 基于激光SLAM的物流分拣机器人自主导航研究. 激光杂志. 2024(05): 236-240 .
    8. 马忠辉. 井下运输车辆电涡流缓速器结构优化. 工矿自动化. 2024(S1): 187-190+199 .
    9. 刘峰,王宏伟,刘宇. 基于多传感融合的巷道三维空间映射. 煤炭学报. 2024(09): 4019-4026 . 本站查看
    10. 胡青松,李敬雯,张元生,李世银,孙彦景. 面向矿井无人驾驶的IMU与激光雷达融合SLAM技术. 工矿自动化. 2024(10): 21-28 .
    11. 马亮,高亮,廉博翔,张琦,蔺小虎,姜之跃. 基于已知点约束的高精度煤矿巷道三维点云建模方法. 工矿自动化. 2024(11): 78-83+151 .
    12. 马宏伟,苏浩,薛旭升,李超,郭逸风,王星,周文剑,崔闻达,喻祖坤,成佳帅. 煤矿井下移动机器人激光标靶定位方法研究. 煤炭科学技术. 2024(11): 60-73 .
    13. 韩雷,云龙. 基于FDH包围盒算法的煤矿井下机器人避障最小安全距离控制. 中国煤炭. 2024(S1): 21-27 .
    14. 张家鑫,田国富,常天根,张森. LIO-SAM框架下的智能车辆SLAM算法优化与实现. 汽车技术. 2024(12): 23-30 .
    15. 景宁波,马宪民,郭卫,秦学斌. 改进动态半径的矿井激光雷达点云滤波算法. 西安科技大学学报. 2023(02): 406-413 .
    16. 刘智博,杨景宏,刘思宇,冯立辉,闫磊. 一种消防救援人员室内作业定位系统的设计. 燕山大学学报. 2023(03): 221-228 .
    17. 董志华,姚顽强,蔺小虎,郑俊良,马柏林,高康洲. 煤矿井下顾及特征点动态提取的激光SLAM算法研究. 煤矿安全. 2023(08): 241-246 .
    18. 薛光辉,李瑞雪,张钲昊,刘爽,魏金波. 基于激光雷达的煤矿井底车场地图融合构建方法研究. 煤炭科学技术. 2023(08): 219-227 .
    19. 高海跃,王凯,王保兵,王丹丹. 基于全局点云地图的煤矿井下无人机定位方法. 工矿自动化. 2023(08): 81-87+133 .
    20. 杜博文,倪晓昌,孔维敬,王雅清. 多传感融合的激光雷达SLAM及应用进展. 天津职业技术师范大学学报. 2023(03): 1-5+85 .
    21. 沈跃,肖鑫桦,刘慧,张璇. 果园机器人LiDAR/IMU紧耦合实时定位与建图方法. 农业机械学报. 2023(11): 20-28+48 .
    22. 李猛钢,胡而已,朱华. 煤矿移动机器人LiDAR/IMU紧耦合SLAM方法. 工矿自动化. 2022(12): 68-78 .

    Other cited types(16)

Catalog

    Article views (65) PDF downloads (30) Cited by(38)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close