LU Kailiang,YUE Jianhua,FAN Ya’nan,et al. Numerical method and application of transient electromagnetic full-time responses of pseudo-random waveforms[J]. Journal of China Coal Society,2024,49(S2):1116−1129. DOI: 10.13225/j.cnki.jccs.2023.1755
Citation: LU Kailiang,YUE Jianhua,FAN Ya’nan,et al. Numerical method and application of transient electromagnetic full-time responses of pseudo-random waveforms[J]. Journal of China Coal Society,2024,49(S2):1116−1129. DOI: 10.13225/j.cnki.jccs.2023.1755

Numerical method and application of transient electromagnetic full-time responses of pseudo-random waveforms

More Information
  • Received Date: December 27, 2023
  • Revised Date: June 22, 2024
  • Available Online: January 21, 2025
  • The traditional transient electromagnetic method primarily uses square waves (trapezoidal waves), which lack high-frequency harmonic components, making it difficult to precisely characterize geological anomalies. This paper proposes emitting pseudo-random waveforms during the power supply period to improve field source resolution and enhance transient electromagnetic detection capability. Firstly, the full-time domain electromagnetic forward modeling method for pseudo-random waveforms is introduced. By using shift linear algebra operations on multiple step responses, one-dimensional pseudo-random electromagnetic responses can be calculated. For three-dimensional numerical simulations, based on the characteristics of pseudo-random waveforms, a source decoupling and Shift-and-Invert Krylov subspace technique is proposed. This method requires only one LU matrix decomposition and several dozen matrix back substitutions to solve the full-time electromagnetic field, and its accuracy is verified by comparing it with the results of the Backward Euler method. Through a combination of theoretical analysis, numerical simulation, and processing of measured data, the characteristics and detection capabilities of the secondary field excited by pseudo-random waveforms are studied in detail. The results show that compared to square waves, pseudo-random waveforms contain richer high-frequency harmonics, which can improve the detection resolution of time-domain electromagnetic methods. However, due to the relatively low energy of low-frequency harmonics, the late-stage electromagnetic field decays rapidly. The secondary field expression of pseudo-random waveforms contains both positive and negative terms, and improper zero-crossing settings can cause the late-stage secondary field to change sign. By reducing the time interval between ti and ti+1 (where i is an odd number), this phenomenon can be avoided. Moreover, comparing the secondary fields of different pulse width pseudo-random waveforms through the layered model shows that the narrow pulse width waveform has higher detection resolution. Further validation of the detection capability of pseudo-random waveforms is conducted through a three-dimensional geoelectrical model. Finally, processing field data demonstrates that the secondary field excited by pseudo-random waveforms can more finely characterize the resistivity characteristics of underground media.

  • [1]
    鞠金峰,李全生,许家林,等. 采动含水层生态功能修复:概念内涵、理论与技术框架[J]. 绿色矿山,2024(1):21−30.

    JU Jinfeng, LI Quansheng, XU Jialin, et al. Ecological function restoration of mining-damaged aquifers:Conceptual connotation, theory, and technical framework[J]. Journal of Green Mine,2024(1):21−30.
    [2]
    底青云,薛国强,殷长春,等. 中国人工源电磁探测新方法[J]. 中国科学:地球科学,2020,50(9):1219−1227. doi: 10.1360/SSTe-2019-0162

    DI Qingyun, XUE Guoqiang, YIN Changchun, et al. New methods of controlled-source electromagnetic detection in China[J]. Scientia Sinica: Terrae,2020,50(9):1219−1227. doi: 10.1360/SSTe-2019-0162
    [3]
    许献磊,马正,陈令洲. 煤矿地质灾害隐患透明化探测技术进展与思考[J]. 绿色矿山,2023(1):56−69.

    XU Xianlei, MA Zheng, CHEN Lingzhou. Progress and thinking of transparent detection technology for hidden geological hazards in coal mines[J]. Journal of Green Mine,2023(1):56−69.
    [4]
    岳建华,鲁凯亮,张河瑞,等. 煤矿采空区精细探查技术[J]. 绿色矿山,2023(1):70−78.

    YUE Jianhua, LU Kailiang, ZHANG Herui, et al. Fine exploration techniques for coal mine goafs[J]. Journal of Green Mine,2023(1):70−78.
    [5]
    XUE G Q, LI X, YU S B, et al. The application of ground-airborne TEM systems for underground cavity detection in China[J]. Journal of Environmental and Engineering Geophysics,2018,23(1):103−113. doi: 10.2113/JEEG23.1.103
    [6]
    鲁凯亮,李貅,戚志鹏,等. 瞬变电磁扩散场到虚拟波场的精细积分变换算法[J]. 地球物理学报,2021,64(9):3379−3390. doi: 10.6038/cjg2021O0454

    LU Kailiang, LI Xiu, QI Zhipeng, et al. A precise integration transform algorithm for transformation from the transient electromagnetic diffusion field into the pseudo wave field[J]. Chinese Journal of Geophysics,2021,64(9):3379−3390. doi: 10.6038/cjg2021O0454
    [7]
    赵越,许枫,李貅,等. 浅海瞬变电磁全波形响应特征及探测能力分析[J]. 地球物理学报,2019,62(4):1526−1540. doi: 10.6038/cjg2019L0780

    ZHAO Yue, XU Feng, LI Xiu, et al. Exploration capability of transmitter current waveform on shallow water TEM response[J]. Chinese Journal of Geophysics,2019,62(4):1526−1540. doi: 10.6038/cjg2019L0780
    [8]
    齐彦福,殷长春,刘云鹤,等. 基于瞬时电流脉冲的三维时间域航空电磁全波形正演模拟[J]. 地球物理学报,2017,60(1):369−382.

    QI Yanfu, YIN Changchun, LIU Yunhe, et al. 3D time-domain airborne EM full-wave forward modeling based on instantaneous current pulse[J]. Chinese Journal of Geophysics,2017,60(1):369−382.
    [9]
    曹华科,戚志鹏,李貅,等. 考虑关断时间的瞬变电磁视电阻率计算及不同波形浅层分辨特征分析[J]. 地球物理学进展,2022,37(4):1704−1716. doi: 10.6038/pg2022FF0562

    CAO Huake, QI Zhipeng, LI Xiu, et al. Transient electromagnetic apparent resistivity calculation considering turn-off time and shallow resolution analysis of different waveforms[J]. Progress in Geophysics,2022,37(4):1704−1716. doi: 10.6038/pg2022FF0562
    [10]
    LIU G M. Effect of transmitter current waveform on airborne TEM response[J]. Exploration Geophysics,1998,29(1/2):35−41. doi: 10.1071/EG998035
    [11]
    陈曙东,林君,张爽. 发射电流波形对瞬变电磁响应的影响[J]. 地球物理学报,2012,55(2):709−716. doi: 10.6038/j.issn.0001-5733.2012.02.035

    CHEN Shudong, LIN Jun, ZHANG Shuang. Effect of transmitter current waveform on TEM response[J]. Chinese Journal of Geophysics,2012,55(2):709−716. doi: 10.6038/j.issn.0001-5733.2012.02.035
    [12]
    殷长春,任秀艳,刘云鹤,等. 航空瞬变电磁法对地下典型目标体的探测能力研究[J]. 地球物理学报,2015,58(9):3370−3379. doi: 10.6038/cjg20150929

    YIN Changchun, REN Xiuyan, LIU Yunhe, et al. Exploration capability of airborne TEM systems for typical targets in the subsurface[J]. Chinese Journal of Geophysics,2015,58(9):3370−3379. doi: 10.6038/cjg20150929
    [13]
    李文翰,刘斌,李术才,等. 基于高性能瞬变电磁辐射源的城市地下空间多分辨成像方法研究[J]. 地球物理学报,2020,63(12):4553−4564. doi: 10.6038/cjg2020O0310

    LI Wenhan, LIU Bin, LI Shucai, et al. Study on multi-resolution imaging method of urban underground space based on high performance transient electromagnetic source[J]. Chinese Journal of Geophysics,2020,63(12):4553−4564. doi: 10.6038/cjg2020O0310
    [14]
    吕庆田,张晓培,汤井田,等. 金属矿地球物理勘探技术与设备:回顾与进展[J]. 地球物理学报,2019,62(10):3629−3664. doi: 10.6038/cjg2019N0056

    LÜ Qingtian, ZHANG Xiaopei, TANG Jingtian, et al. Review on advancement in technology and equipment of geophysical exploration for metallic deposits in China[J]. Chinese Journal of Geophysics,2019,62(10):3629−3664. doi: 10.6038/cjg2019N0056
    [15]
    殷长春,黄威,贲放. 时间域航空电磁系统瞬变全时响应正演模拟[J]. 地球物理学报,2013,56(9):3153−3162. doi: 10.6038/cjg20130928

    YIN Changchun, HUANG Wei, BEN Fang. The full-time electromagnetic modeling for time-domain airborne electromagnetic systems[J]. Chinese Journal of Geophysics,2013,56(9):3153−3162. doi: 10.6038/cjg20130928
    [16]
    岳鑫. 基于微分脉冲扫描的地空瞬变电磁多分辨探测[D]. 西安:长安大学,2021.

    YUE Xin. Multi-resolution detection of ground-to-air transient electromagnetic based on differential pulse scanning[D]. Xi’an:Changan University, 2021.
    [17]
    ZHOU J M, LIU W T, LI X, et al. 3-D full-time TEM modeling using shift-and-invert Krylov subspace method[J]. IEEE Transactions on Geoscience and Remote Sensing,2020,58(10):7096−7104. doi: 10.1109/TGRS.2020.2979798
    [18]
    ZHOU J M, WEN Y H, JING X, et al. Source decoupling and model order reduction for 3-D full-time transient electromagnetic modeling[J]. IEEE Transactions on Geoscience and Remote Sensing,2023,61:2002612.
    [19]
    KEY K. 1D inversion of multicomponent, multifrequency marine CSEM data:Methodology and synthetic studies for resolving thin resistive layers[J]. Geophysics,2009,74(2):F9−F20. doi: 10.1190/1.3058434
    [20]
    HABER E. Computational methods in geophysical electromagnetics[M]. Philadelphia, PA, USA:Society for Industrial and Applied Mathematics, 2014.
    [21]
    LU K L, ZHOU J M, LI X, et al. 3D large-scale transient electromagnetic modeling using a Shift-and-Invert Krylov subspace method[J]. Journal of Applied Geophysics,2022,198:104573. doi: 10.1016/j.jappgeo.2022.104573
    [22]
    滕吉文,薛国强,宋明春. 第二深度空间矿产资源探查理念与电磁法找矿实践[J]. 地球物理学报,2022,65(10):3975−3985. doi: 10.6038/cjg2022P0762

    TENG Jiwen, XUE Guoqiang, SONG Mingchun. Theory on exploring mineral resources in the second deep space and practices with electromagnetic method[J]. Chinese Journal of Geophysics,2022,65(10):3975−3985. doi: 10.6038/cjg2022P0762
    [23]
    张莹莹,李貅,姚伟华,等. 多辐射场源地空瞬变电磁法多分量全域视电阻率定义[J]. 地球物理学报,2015,58(8):2745−2758. doi: 10.6038/cjg20150811

    ZHANG Yingying, LI Xiu, YAO Weihua, et al. Multi-component full field apparent resistivity definition of multi-source ground-airborne transient electromagnetic method with galvanic sources[J]. Chinese Journal of Geophysics,2015,58(8):2745−2758. doi: 10.6038/cjg20150811

Catalog

    Article views (26) PDF downloads (5) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close