LIU Guolei,WANG Zedong,ZHANG Xiufeng,et al. Mechanism and technology of rock burst prevention in deep coal tunnel based on controlling surrounding rock stress difference gradient[J]. Journal of China Coal Society,2024,49(S2):674−693. DOI: 10.13225/j.cnki.jccs.2023.1769
Citation: LIU Guolei,WANG Zedong,ZHANG Xiufeng,et al. Mechanism and technology of rock burst prevention in deep coal tunnel based on controlling surrounding rock stress difference gradient[J]. Journal of China Coal Society,2024,49(S2):674−693. DOI: 10.13225/j.cnki.jccs.2023.1769

Mechanism and technology of rock burst prevention in deep coal tunnel based on controlling surrounding rock stress difference gradient

More Information
  • Received Date: December 29, 2023
  • Revised Date: March 08, 2024
  • Available Online: January 21, 2025
  • In view of the rock burst disaster of deep coal roadway, explore the rock burst mechanism and develop the key prevention technology, based on the “Mechanism of rock burst in deep coal tunnel surroundings due to stress difference gradient” which attaches importance to the influence of horizontal stress. The stability of unit body and surrounding rock, the damage characteristics and prevention mechanism of rock burst from the perspective of stress difference are analyzed with the method of numerical simulation, theoretical analysis, on-site practice in this paper. Based on the thought of regional and local Dgc combined controlling, put forward the three-stage transformation of coal tunnel surrounding rock prevention technology program. The engineering case of 30202 working face in Muduchaideng coal mine is analyzed. The results show that: Strong rock burst propensity coal body can carry higher Δσ, in order to compensate for the excessive Δσ requires a higher intensity of energy release, Δσ drive the coal body is biased towards brittle shear rupture, Coal bodies with rock burst propensity are prone to destabilization driven by high Dgc. With the rock burst propensity increases, the Dgc value shows an increasing trend, especially in the strong rock burst propensity coal seam, high Dgc value makes the surrounding rock burst risk surge, Enhance the impedance of the Dg elevation area, weaken the Dgmax value is the focus of anti-rock explosion. Strong support in the enhancement of the strength of the coal body, but also lead to the concentration of Dg in the gang, the Dgc value is closer to the critical conditions of rock explosion. Active support and passive support and coal seam modification need combined effect to reduce the rock burst risk effectively. The first level of regional fracturing reconstruction and the second level of regional water injection modification technology can significantly reduce the Δσ value, when the rock explosion risk level of the coal body is reduced. Therefore, the spacing of drill holes in the third level can be increased appropriately. After the validation of microseismical system, pipeline pressure, coal dust volume and other indexes and practical test, this technical solution has stronger modification effect compared with traditional technical methods, and it is also more suitable for the demand of coal seam modification in high Δσ area.

  • [1]
    袁亮. 我国煤炭工业高质量发展面临的挑战与对策[J],2020,46(1):6−12.

    YUAN Liang. Challenges and countermeasures for high quality development of China’s coal industry[J]. China Coal, 2020, 46(1):6−12.
    [2]
    窦林名,田鑫元,曹安业,等. 我国煤矿冲击地压防治现状与难题[J]. 煤炭学报,2022,47(1):152−171.

    DOU Linming, TIAN Xinyuan, CAO Anye, et al. Present situation and problems of coal mine rock burst prevention and control in China[J]. Journal of China Coal Society,2022,47(1):152−171.
    [3]
    潘俊锋,齐庆新,刘少虹,等. 我国煤炭深部开采冲击地压特征、类型及分源防控技术[J]. 煤炭学报,2020,45(1):111−121.

    PAN Junfeng, QI Qingxin, LIU Shaohong, et al. Characteristics, types and prevention and control technology of rock burst in deep coal mining in China[J]. Journal of China Coal Society,2020,45(1):111−121.
    [4]
    曹安业,刘耀琪,蒋思齐,等. 临地堑开采冲击地压发生机制及主控因素研究[J]. 采矿与安全工程学报,2022,39(1):36−44,53.

    CAO Anye, LIU Yaoqi, JIANG Siqi, et al. Occurrence mechanism and main control factors of coal burst near graben mining[J]. Journal of Mining & Safety Engineering,2022,39(1):36−44,53.
    [5]
    姜耀东,潘一山,姜福兴,等. 我国煤炭开采中的冲击地压机理和防治[J]. 煤炭学报,2014,39(2):205−213.

    JIANG Yaodong, PAN Yishan, JIANG Fuxing, et al. State of the art review on mechanism and prevention of coal bumps in China[J]. Journal of China Coal Society,2014,39(2):205−213.
    [6]
    齐庆新,李一哲,赵善坤,等. 我国煤矿冲击地压发展70年:理论与技术体系的建立与思考[J]. 煤炭科学技术,2019,47(9):1−40.

    QI Qingxin, LI Yizhe, ZHAO Shankun, et al. Seventy years development of coal mine rockburst in China:Establishment and consideration of theory and technology system[J]. Coal Science and Technology,2019,47(9):1−40.
    [7]
    康红普,徐刚,王彪谋,等. 我国煤炭开采与岩层控制技术发展40a及展望[J]. 采矿与岩层控制工程学报,2019,1(2):7−39.

    KANG Hongpu, XU Gang, WANG Biaomou, et al. Forty years development and prospects of underground coal mining and strata control technologies in China[J]. Journal of Mining and Strata Control Engineering,2019,1(2):7−39.
    [8]
    袁亮,姜耀东,何学秋,等. 煤矿典型动力灾害风险精准判识及监控预警关键技术研究进展[J]. 煤炭学报,2018,43(2):306−318.

    YUAN Liang, JIANG Yaodong, HE Xueqiu, et al. Research progress of precise risk accurate identification and monitoring early warning on typical dynamic disasters in coal mine[J]. Journal of China Coal Society,2018,43(2):306−318.
    [9]
    李玉生. 冲击地压机理及其初步应用[J]. 中国矿业学院学报,1985,14,(3):42−48.

    LI Yusheng. Rock burst mechanism and its preliminary application[J]. Journal of China University of Mining Technology,1985,14(3):42−48.
    [10]
    章梦涛. 冲击地压失稳理论与数值模拟计算[J]. 岩石力学与工程学报,1987,6(3):197−204.

    ZHANG Mengtao. Instability theory and mathematical model for coal/rock bursts[J]. Chinese Journal of Rock Mechanics and Engineering,1987,6(3):197−204.
    [11]
    齐庆新,高作志. 层状煤岩体结构破坏的冲击矿压理论[J]. 煤矿开采,1998,8(2):14−17.

    QI Qingxin, GAO Zuozhi. The theory of rockburst led by structure failure of bedded coal-rock mass[J]. Coal Mining Technology,1998,8(2):14−17.
    [12]
    潘立友,蒋宇静,李兴伟,等. 煤层冲击地压的扩容理论[J]. 岩石力学与工程学报,2002,21(S2):2301−2303.

    PAN Liyou, JIANG Yujing, LI Xingwei, et al. Dilatation theory of rock burst[J]. Chinese Journal of Rock Mechanics and Engineering,2002,21(S2):2301−2303.
    [13]
    窦林名,陆菜平,牟宗龙,等. 冲击矿压的强度弱化减冲理论及其应用[J]. 煤炭学报,2005,30(6):690−694. doi: 10.3321/j.issn:0253-9993.2005.06.003

    DOU Linming, LU Caiping, MOU Zonglong, et al. Intensity weakening theory for rockburst and its application[J]. Journal of China Coal Society,2005,30(6):690−694. doi: 10.3321/j.issn:0253-9993.2005.06.003
    [14]
    潘俊锋,宁宇,毛德兵,等. 煤矿开采冲击地压启动理论[J]. 岩石力学与工程学报,2012,31(3):586−596. doi: 10.3969/j.issn.1000-6915.2012.03.017

    PAN Junfeng, NING Yu, MAO Debing, et al. Theory of rockburst start-up during coal mining[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(3):586−596. doi: 10.3969/j.issn.1000-6915.2012.03.017
    [15]
    潘一山. 煤矿冲击地压扰动响应失稳理论及应用[J]. 煤炭学报,2018,43(8):2091−2098.

    PAN Yishan. Disturbance response instability theory of rockburst in coal mine[J]. Journal of China Coal Society,2018,43(8):2091−2098.
    [16]
    XIE H P, GAO M Z, ZHANG R, et al. Study on the mechanical properties and mechanical response of coal mining at 1000 m or deeper[J]. Rock Mechanics and Rock Engineering,2019,52(5):1475−1490. doi: 10.1007/s00603-018-1509-y
    [17]
    康红普. 我国煤矿巷道围岩控制技术发展70年及展望[J]. 岩石力学与工程学报,2021,40(1):1−30.

    KANG Hongpu. Seventy years development and prospects of strata control technologies for coal mine roadways in China[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(1):1−30.
    [18]
    康红普,姜鹏飞,黄炳香,等. 煤矿千米深井巷道围岩支护−改性−卸压协同控制技术[J]. 煤炭学报,2020,45(3):845−864.

    KANG Hongpu, JIANG Pengfei, HUANG Bingxiang, et al. Roadway strata control technology by means of bolting-modification-destressing in synergy in 1 000 m deep coal mines[J]. Journal of China Coal Society,2020,45(3):845−864.
    [19]
    黄炳香,张农,靖洪文,等. 深井采动巷道围岩流变和结构失稳大变形理论[J]. 煤炭学报,2020,45(3):911−926.

    HUANG Bingxiang, ZHANG Nong, JING Hongwen, et al. Large deformation theory of rheology and structural instability of the surrounding rock in deep mining roadway[J]. Journal of China Coal Society,2020,45(3):911−926.
    [20]
    谢生荣,李世俊,黄肖,等. 深部沿空巷道围岩主应力差演化规律与控制[J]. 煤炭学报,2015,40(10):2355−2360.

    XIE Shengrong, LI Shijun, HUANG Xiao, et al. Surrounding rock principal stress difference evolution law and control of gob-side entry driving in deep mine[J]. Journal of China Coal Society,2015,40(10):2355−2360.
    [21]
    左建平,魏旭,王军,等. 深部巷道围岩梯度破坏机理及模型研究[J]. 中国矿业大学学报,2018,47(3):478−485.

    ZUO Jianping, WEI Xu, WANG Jun, et al. Investigation of failure mechanism and model for rocks in deep roadway under stress gradient effect[J]. Journal of China University of Mining & Technology,2018,47(3):478−485.
    [22]
    康红普,王金华,高富强. 掘进工作面围岩应力分布特征及其与支护的关系[J]. 煤炭学报,2009,34(12):1585−1593. doi: 10.3321/j.issn:0253-9993.2009.12.001

    KANG Hongpu, WANG Jinhua, GAO Fuqiang. Stress distribution characteristics in rock surrounding heading face and its relationship with supporting[J]. Journal of China Coal Society,2009,34(12):1585−1593. doi: 10.3321/j.issn:0253-9993.2009.12.001
    [23]
    何富连,张广超. 深部高水平构造应力巷道围岩稳定性分析及控制[J]. 中国矿业大学学报,2015,44(3):466−476.

    HE Fulian, ZHANG Guangchao. Stability analysis and control of deep underground roadways subjected to high horizontal tectonic stress[J]. Journal of China University of Mining & Technology,2015,44(3):466−476.
    [24]
    刘国磊,王泽东,崔嵛,等. 深部煤巷围岩三向应力差异梯度致冲机理[J]. 煤炭学报,2023,48(5):2106−2122.

    LIU Guolei, WANG Zedong, CUI Yu, et al. Mechanism of rock burst in deep coal tunnel surroundings due to three-way stress difference gradient[J]. Journal of China Coal Society,2023,48(5):2106−2122.
    [25]
    周宏伟,谢和平,左建平. 深部高地应力下岩石力学行为研究进展[J]. 力学进展,2005,35(1):91−99. doi: 10.3321/j.issn:1000-0992.2005.01.009

    ZHOU Hongwei, XIE Heping, ZUO Jianping. Developments in researches on mechanical behaviors of rocks under the condition of high ground pressure in the depths[J]. Advances in Mechanics,2005,35(1):91−99. doi: 10.3321/j.issn:1000-0992.2005.01.009
    [26]
    谢和平,高峰,鞠杨. 深部岩体力学研究与探索[J]. 岩石力学与工程学报,2015,34(11):2161−2178.

    XIE Heping, GAO Feng, JU Yang. Research and development of rock mechanics in deep ground engineering[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(11):2161−2178.
    [27]
    吴拥政,付玉凯,何杰,等. 深部冲击地压巷道“卸压−支护−防护” 协同防控原理与技术[J]. 煤炭学报,2021,46(1):132−144.

    WU Yongzheng, FU Yukai, HE Jie, et al. Principle and technology of “pressure relief-support-protection” collaborative prevention and control in deep rock burst roadway[J]. Journal of China Coal Society,2021,46(1):132−144.
    [28]
    潘一山,齐庆新,王爱文,等. 煤矿冲击地压巷道三级支护理论与技术[J]. 煤炭学报,2020,45(5):1585−1594.

    PAN Yishan, QI Qingxin, WANG Aiwen, et al. Theory and technology of three levels support in bump-prone roadway[J]. Journal of China Coal Society,2020,45(5):1585−1594.
    [29]
    高明仕,贺永亮,陆菜平,等. 巷道内强主动支护与弱结构卸压防冲协调机制[J]. 煤炭学报,2020,45(8):2749−2759.

    GAO Mingshi, HE Yongliang, LU Caiping, et al. Coordination mechanism of internal strong active support, soft structure pressure relief and anti-punching of roadway[J]. Journal of China Coal Society,2020,45(8):2749−2759.
    [30]
    王志强,王鹏,石磊,等. 基于沿空巷道围岩应力分析的防冲机理研究[J]. 中国矿业大学学报,2020,49(6):1046−1056.

    WANG Zhiqiang, WANG Peng, SHI Lei, et al. Research on prevention of rock burst based on stress analysis of surrounding rock of gob-side entry[J]. Journal of China University of Mining & Technology,2020,49(6):1046−1056.
    [31]
    付玉凯,鞠文君,吴拥政,等. 深部回采巷道锚杆(索)防冲吸能机理与实践[J]. 煤炭学报,2020,45(S2):609−617.

    FU Yukai, JU Wenjun, WU Yongzheng, et al. Mechanism and practice of anti-scour and energy absorption of anchor rod (cable) in deep mining roadway[J]. Journal of China Coal Society,2020,45(S2):609−617.
    [32]
    赵善坤. 深孔顶板预裂爆破与定向水压致裂防冲适用性对比分析[J]. 采矿与安全工程学报,2021,38(4):706−719.

    ZHAO Shankun. A comparative analysis of deep hole roof pre-blasting and directional hydraulic fracture for rockburst control[J]. Journal of Mining & Safety Engineering,2021,38(4):706−719.
    [33]
    王凯兴,吴佳成,潘一山,等. 巷道吸能支护的减震防冲效应分析[J]. 工程力学,2023,40(6):204−212.

    WANG Kaixing, WU Jiacheng, PAN Yishan, et al. Analysis of shock absorption and anti-impact effect of energy-absorbing support in roadway[J]. Engineering Mechanics,2023,40(6):204−212.
    [34]
    田立勇,周禹鹏,孙业新,等. 防冲支架立柱多胞薄壁吸能构件能量吸收性能[J]. 煤炭学报,2023,48(5):2224−2235.

    TIAN Liyong, ZHOU Yupeng, SUN Yexin, et al. Energy absorption performance of multicellular thin-walled energy-absorbing components of anti-shock support columns[J]. Journal of China Coal Society,2023,48(5):2224−2235.
    [35]
    欧阳振华,周然然,石增柱,等. 保护层不对称卸压工作面分区防冲技术[J]. 煤矿安全,2023,54(4):103−110.

    OUYANG Zhenhua, ZHOU Ranran, SHI Zengzhu, et al. Zonal prevention and control technology for rock burst in asymmetrical pressure-relief working face under protective layer[J]. Safety in Coal Mines,2023,54(4):103−110.
    [36]
    解嘉豪,韩刚,孙凯,等. 邻空巷坚硬顶板预裂爆破防冲机理及效果检验[J]. 煤炭学报,2023,48(5):2078−2091.

    XIE Jiahao, HAN Gang, SUN Kai, et al. Rockburst prevention mechanism and effect test of blast presplitting of hard roof in gob-side roadway[J]. Journal of China Coal Society,2023,48(5):2078−2091.
    [37]
    潘一山,耿琳,李忠华. 煤层冲击倾向性与危险性评价指标研究[J]. 煤炭学报,2010,35(12):1975−1978.

    PAN Yishan, GENG Lin, LI Zhonghua. Research on evaluation indices for impact tendency and danger of coal seam[J]. Journal of China Coal Society,2010,35(12):1975−1978.
    [38]
    武猛猛,王 刚,王 锐,等. 浅埋采场上覆岩层孔隙率的时空分布特征[J]. 煤炭学报,2017,42(S1):112−121.

    WU Mengmeng, WANG Gang, WANG Rui, et al. Space-time porosity distribution on overlying strata above a shallow seam[J]. Journal of China Coal Society,2017,42(S1):112−121.
    [39]
    江成浩,刘浩,周晓华,等. 基于PFC3D的综放工作面裂隙场演化规律数值模拟[J]. 煤矿安全,2019,50(1):205−209.

    JIANG Chenghao, LIU Hao, ZHOU Xiaohua, et al. Numerical simulation study on fissure field evolution laws of fully mechanized caving face based on PFC3D[J]. Safety in Coal Mines,2019,50(1):205−209.
    [40]
    韩军,崔露郁,贾冬旭,等. 坚硬顶板回采巷道冲击地压的卸载滑脱机制[J]. 煤炭学报,2022,47(2):711−721.

    HAN Jun, CUI Luyu, JIA Dongxu, et al. Unloading-slippage mechanism of rock burst occurred in longwall roadway[J]. Journal of China Coal Society,2022,47(2):711−721.
    [41]
    韩玉忠,吕长刚,魏光亮,等. 超深掘进工作面冲击地压防治技术研究[J]. 煤炭科学技术,2020,48(S2):84−91.

    HAN Yuzhong, LYU Changgang, WEI Guangliang, et al. Study on prevention and control technology of rock burst in ultra-deep driving face[J]. Coal Science and Technology,2020,48(S2):84−91.
    [42]
    张明,李克庆,姜福兴,等. 基于覆岩结构理论的冲击煤层孤岛工作面宽度研究[J]. 金属矿山,2016(4):62−66.

    ZHANG Ming, LI Keqing, JIANG Fuxing, et al. Study on the width of isolated coal face with rock-burst hazards based on the theory of overburden structure[J]. Metal Mine,2016(4):62−66.
  • Cited by

    Periodical cited type(15)

    1. 田正,胡智星,张重发,张新鹏,种磊刚,张开玉,孙宁旭. 动载扰动下特厚煤层巷道破坏机理及其控制技术研究. 煤炭技术. 2024(03): 26-31 .
    2. 苑新亮,吴拥政,周鹏赫. 锚杆支护网片动载力学性能试验研究. 煤炭工程. 2024(04): 119-124 .
    3. 邓鹏海,刘泉声. 基于FDEM数值模拟的软岩大变形预测及新分级研究. 中国公路学报. 2024(11): 164-180 .
    4. 钱万学,侯挺,江宗瑜. 象山矿软岩巷道锚网协同承载支护技术应用. 煤. 2023(02): 42-45 .
    5. 吴拥政,付玉凯,周鹏赫,山世昌. 30 000 J多功能落锤冲击试验机研制及应用. 煤炭学报. 2023(02): 623-635 . 本站查看
    6. 田鹏. 煤矿金属网力学性能及其匹配性试验研究. 煤. 2023(06): 19-24 .
    7. 王宝华,隋纪胜. 赵家寨矿底抽巷锚网喷支护参数设计及应用. 煤炭技术. 2023(11): 98-102 .
    8. 杜学领. 矿用锚杆物理实验研究方法述评. 煤矿安全. 2023(12): 97-115 .
    9. 原贵阳,高富强,娄金福,李建忠,王晓卿. 锚杆支护金属网力学性能及传力机制试验研究. 煤炭学报. 2022(04): 1512-1522 . 本站查看
    10. 郭良银,安龙. 新城金矿深部全断面锚网喷支护技术研究. 中国矿业. 2022(07): 132-136 .
    11. 何杰,吴拥政,付玉凯. 冲击载荷下锚杆护表构件力学响应规律研究. 采矿与安全工程学报. 2021(03): 556-564 .
    12. 高明仕,贺永亮,徐东,俞鑫. 冲击地压巷道减隔震技术原理及应用. 煤炭科学技术. 2021(06): 53-60 .
    13. 刘海全,朱敬,王建. 特厚煤层回采巷道顶煤稳定特征研究. 煤炭科技. 2021(04): 62-68 .
    14. 郭现伟,张云宁,白冰,岳博. 济宁三号煤矿坚硬顶板条件快速掘进支护参数优化. 煤炭科技. 2021(06): 7-14+20 .
    15. 付玉凯,鞠文君,吴拥政,陈建强,焦建康,刘昆轮. 深部回采巷道锚杆(索)防冲吸能机理与实践. 煤炭学报. 2020(S2): 609-617 . 本站查看

    Other cited types(11)

Catalog

    Article views (14) PDF downloads (7) Cited by(26)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close