XIAO Fukun,XIE Kai,LAO Zhiwei,et al. Jacking resistance in collapsed body considering buckling of force chain[J]. Journal of China Coal Society,2025,50(1):281−296. DOI: 10.13225/j.cnki.jccs.2024.0061
Citation: XIAO Fukun,XIE Kai,LAO Zhiwei,et al. Jacking resistance in collapsed body considering buckling of force chain[J]. Journal of China Coal Society,2025,50(1):281−296. DOI: 10.13225/j.cnki.jccs.2024.0061

Jacking resistance in collapsed body considering buckling of force chain

More Information
  • Received Date: January 12, 2024
  • Available Online: January 19, 2025
  • In order to establish an effective and secure emergency rescue channel within a collapsed structure using the pipe jacking method, understanding the evolution mechanism of jacking resistance is crucial. The evolution characteristics of the jacking resistance and the macroscopic displacement of the collapsed particles during pipe jacking process were analyzed by physical similarity simulation test and numerical simulation test, and the drop characteristics of the jacking resistance were discussed by using 3D force chain identification method and the force chain buckling behavior of the particle material. In order to further determine the intrinsic mechanical mechanism of the jacking resistance drop characteristics, the particle stacking thickness, pipe radius, particle size and effective modulus were selected as orthogonal factors, and the numerical simulation test at different parts of the pipe were carried out. On the basis of the force chain buckling behavior, the change characteristics of the jacking resistance and the macroscopic and microscopic parameters of the particles, such as jacking resistance drop, contact failure, sudden drop in coordination number, particle elastic potential energy release and force chain length change, were studied. The results show that: The macro-displacement of particles primarily occurs around the oblique top of the pipe jacking cut, where a distinct and continuous shear slip zone emerges within the particles. The decrease in jacking resistance is associated with the unstable slip of particles and the localized buckling behavior of force chains. The frequency of dropping jacking resistance positively correlates with pipe diameter and effective modulus, while negatively correlating with particle thickness and size. Notably, the dropping frequency observed in pipe jacking cut tests is higher than that in outer wall tests, and both exhibit cyclic rising-falling patterns with high similarity. As the thickness and size of the overlying particles increase, the length and effective length of force chains also increase. This extension expands the reach of force chains, leading to a broader distribution range of buckling contacts, changes in coordination numbers, degrees of buckling deformation within force chains, and in-creases in elastic potential energy. The buckling and slip of force chains within the collapsed body are key factors contributing to the release of elastic potential energy and the breaking down of extended force chains within particles. The rapid instability, fall, and accumulation of particles along shear planes above the pipe jacking, guided by gravity is the reason why the release of elastic potential energy of these particles has little effect on the overall resistance of the pipe jacking.

  • [1]
    郝传波,张睿,成乾龙,等. 破碎煤体再造矩形通道受力分析[J]. 中国安全生产科学技术,2018,14(12):114−118.

    HAO Chuanbo, ZHANG Rui, CHENG Qianlong, et al. Stress analysis of reconstructive rectangular passage in fragmentized coal body[J]. Journal of Safety Science and Technology,2018,14(12):114−118.
    [2]
    田宏亮,张阳,郝世俊,等. 矿山灾害应急救援通道快速安全构建技术与装备[J]. 煤炭科学技术,2019,47(5):29−33.

    TIAN Hongliang, ZHANG Yang, HAO Shijun, et al. Technology and equipment for rapid safety construction of emergency rescue channel after mine disaster[J]. Coal Science and Technology,2019,47(5):29−33.
    [3]
    许献磊,马正,陈令洲. 煤矿地质灾害隐患透明化探测技术进展与思考[J]. 绿色矿山,2023,1(1):56−69.

    XU Xianlei, MA Zheng, CHEN Lingzhou. Progress and thinking of transparent detection technology for hidden geological hazards in coal mines[J]. Journal of Green Mine,2023,1(1):56−69.
    [4]
    高振宇. 深部煤矿高抽巷顶管施工力学行为及对策研究[D]. 广州:华南理工大学,2018.

    GAO Zhenyu. study on mechanical behaviors and control measures of the pipe-jacking method applied for excavate hign level suction roadway in deep coal mine[D]. Guangzhou:South China University of Technology, 2019.
    [5]
    张耀,闫治国,朱合华. 大口径新型顶管力学行为现场试验研究[J]. 岩土工程学报,2017,39(10):1842−1850. doi: 10.11779/CJGE201710012

    ZHANG Yao, YAN Zhiguo, ZHU Hehua. Site-based researches on mechanical behavior of new large-diameter pipes during pipe jacking[J]. Chinese Journal of Geotechnical Engineering,2017,39(10):1842−1850. doi: 10.11779/CJGE201710012
    [6]
    焦程龙,赵歆,牛富俊. 矩形顶管管−土接触面状态及顶推力预估[J]. 东北大学学报(自然科学版),2020,41(10):1459−1464.

    JIAO Chenglong, ZHAO Xin, NIU Fujun. Pipe-soil contact state and jacking force prediction of rectangular pipe jacking[J]. Journal of Northeastern University (Natural Science),2020,41(10):1459−1464.
    [7]
    张志伟,李忠超,梁荣柱,等. 软土地层矩形顶管掘进引起地表隆沉变形分析[J]. 岩土力学,2022,43(S1):419−430.

    ZHANG Zhiwei, LI Zhongchao, LIANG Rongzhu, et al. Analysis of upheaval and settlement deformation of ground surface caused by excavation of rectangular pipe jacking in soft soil stratum[J]. Rock and Soil Mechanics,2022,43(S1):419−430.
    [8]
    CHAPMAN D N, ICHIOKA Y. Prediction of jacking forces for microtunnelling operations[J]. Tunnelling and Underground Space Technology,1999,14:31−41. doi: 10.1016/S0886-7798(99)00019-X
    [9]
    OSUMI T. Calculating jacking forces for pipe jacking methods[J]. No-Dig International Research,2000,586:40−42.
    [10]
    纪新博. 沈阳地区砂土地层顶管顶力计算方法研究[D]. 沈阳:东北大学,2017.

    JI Xinbo. Study on calculation method of jacking force of pipe jacking in sandy soil layer in Shenyang area[D]. Shenyang:Northeastern University, 2017.
    [11]
    PELLET-BEAUCOUR A L, KASTNER R. Experimental and analytical study of friction forces during microtunneling operations[J]. Tunnelling and Underground Space Technology,2002,17(1):83−97. doi: 10.1016/S0886-7798(01)00044-X
    [12]
    STAHELI K. Jacking force prediction:An interface friction approach based on pipe surface roughness[D]. Atlanta:Georgia Institute of Technology, 2006.
    [13]
    BENNETT R D. Jacking forces and ground deformations associated with microtunneling[D]. Illinois:University of Illinois, 1998.
    [14]
    孙潇昊,缪林昌,林海山. 不同埋深盾构隧道开挖面稳定问题数值模拟[J]. 东南大学学报(自然科学版),2017,47(1):164−169.

    SUN Xiaohao, MIAO Linchang, LIN Haishan. Numerical simulation research on excavation face stability of different depths of shield tunnel[J]. Journal of Southeast University (Natural Science Edition),2017,47(1):164−169.
    [15]
    王俊,林国进,唐协,等. 砂土地层盾构隧道稳定性三维离散元研究[J]. 西南交通大学学报,2018,53(2):312−321. doi: 10.3969/j.issn.0258-2724.2018.02.013

    WANG Jun, LIN Guojin, TANG Xie, et al. Face stability analysis of shield tunnel in sandy ground using 3D DEM[J]. Journal of Southwest Jiaotong University,2018,53(2):312−321. doi: 10.3969/j.issn.0258-2724.2018.02.013
    [16]
    桂智琛,徐良骥,刘潇鹏,等. 基于时序InSAR的关闭矿井地表残余沉降监测[J]. 绿色矿山,2024,2(1):54−63.

    GUI Zhichen, XU Liangji, LIU Xiaopeng, et al. Monitoring surface residual settlement of closed mines based on time series InSAR[J]. Journal of Green Mine,2024,2(1):54−63.
    [17]
    万少锋. 基于滑移线场的隧洞掌子面稳定性研究[D]. 南昌:南昌大学,2020.

    WAN Shaofen. Face stability analysis of shield tunnel using slip line method[D]. Nanchang:Nanchang University, 2021.
    [18]
    刘克奇,丁万涛,陈瑞,等. 盾构掌子面三维破坏模型构建与极限支护力计算[J]. 岩土力学,2020,41(7):2293−2303,2469.

    LIU Keqi, DING Wantao, CHEN Rui, et al. Construction of three-dimensional failure model of shield tunnel face and calculation of the limit supporting force[J]. Rock and Soil Mechanics,2020,41(7):2293−2303,2469.
    [19]
    JI X B, NI P P, BARLA M. Analysis of jacking forces during pipe jacking in granular materials using particle methods[J]. Underground Space,2019,4(4):277−288. doi: 10.1016/j.undsp.2019.03.002
    [20]
    PEERUN M I, ONG D E L, DESHA C. A strategic review on enhanced DEM simulation and advanced 3-D particle printing techniques to improve pipe-jacking force prediction[J]. Tunnelling and Underground Space Technology,2022,123:104415. doi: 10.1016/j.tust.2022.104415
    [21]
    CHOO C S, ONG D E L. Evaluation of pipe-jacking forces based on direct shear testing of reconstituted tunneling rock spoils[J]. Journal of Geotechnical and Geoenvironmental Engineering,2015,141(10):04015044. doi: 10.1061/(ASCE)GT.1943-5606.0001348
    [22]
    杨文义. 砂质黏土层中泥水平衡顶管施工顶力分析[J]. 煤炭学报,2006,31(2):159−162. doi: 10.3321/j.issn:0253-9993.2006.02.006

    YANG Wenyi. Analysis of thrust force by using slurry pipe jacking method in sandy clay soil[J]. Journal of China Coal Society,2006,31(2):159−162. doi: 10.3321/j.issn:0253-9993.2006.02.006
    [23]
    郝传波,于会军,张国华,等. 井下断层地质破碎带巷道堆积体垮落形态[J]. 黑龙江科技大学学报,2016,26(3):251−255,261. doi: 10.3969/j.issn.2095-7262.2016.03.004

    HAO Chuanbo, YU Huijun, ZHANG Guohua, et al. Caving forms of roadway deposit underground geological fault fracture zone[J]. Journal of Heilongjiang University of Science and Technology,2016,26(3):251−255,261. doi: 10.3969/j.issn.2095-7262.2016.03.004
    [24]
    梁艳坤,隋旺华,朱涛,等. 哈拉沟煤矿垮落带破碎岩体溃砂的离散元数值模拟研究[J]. 煤炭学报,2017,42(2):470−476.

    LIANG Yankun, SUI Wanghua, ZHU Tao, et al. Numerical simulation of quicksand through the broken rocks in caving zone due to coal mining based on DEM[J]. Journal of China Coal Society,2017,42(2):470−476.
    [25]
    李桂臣,邵泽宇,孙元田,等. 煤矿掘采空间垮塌岩体稳定性与救援通道构建[J]. 绿色矿山,2024,2(1):11−20.

    LI Guichen, SHAO Zeyu, SUN Yuantian, et al. Stability of collapsed rock body in coal mine excavation space and construction of rescue channel[J]. Journal of Green Mine,2024,2(1):11−20.
    [26]
    郝传波,于会军,张国华,等. 井下断层地质破碎带巷道垮落体力学特性[J]. 黑龙江科技大学学报,2016,26(4):351−357. doi: 10.3969/j.issn.2095-7262.2016.04.001

    HAO Chuanbo, YU Huijun, ZHANG Guohua, et al. Underground geological fault fracture zone of roadway collapse mechanical properties fall[J]. Journal of Heilongjiang University of Science and Technology,2016,26(4):351−357. doi: 10.3969/j.issn.2095-7262.2016.04.001
    [27]
    黄松元. 散体力学[M]. 北京:机械工业出版社,1993.
    [28]
    HAO C B, LIU Z W, XIAO F K, et al. The movement characteristics of coal granular body in excavating rescue channel in the collapsed body[J]. Advances in Civil Engineering,2018,6:4925828
    [29]
    陈福振,李亚雄,史腾达,等. 三维圆柱型颗粒堆坍塌问题的全相态数值模拟[J]. 力学学报,2022,54(6):1572−1589. doi: 10.6052/0459-1879-22-001

    CHEN Fuzhen, LI Yaxiong, SHI Tengda, et al. Numerical simulation of full phases of collapse of threedimensional cylindrical granular pile[J]. Chinese Journal of Theoretical and Applied Mechanics,2022,54(6):1572−1589. doi: 10.6052/0459-1879-22-001
    [30]
    孙其诚,王光谦. 颗粒物质力学导论[M]. 北京:科学出版社,2009.
    [31]
    杨科,魏祯,何祥,等. 矸石集料承载力学特性模拟研究[J]. 煤炭学报,2022,47(3):1087−1097.

    YANG Ke, WEI Zhen, HE Xiang, et al. Simulation experiment on bearing mechanical properties of gangue aggregate[J]. Journal of China Coal Society,2022,47(3):1087−1097.
    [32]
    孙其诚,王光谦. 颗粒流动力学及其离散模型评述[J]. 力学进展,2008,38(1):87−100. doi: 10.3321/j.issn:1000-0992.2008.01.006

    SUN Qicheng, WANG Guangqian. Review on granular flow dynamics and its discrete element method[J]. Advances in Mechanics,2008,38(1):87−100. doi: 10.3321/j.issn:1000-0992.2008.01.006
    [33]
    孙其诚,刘晓星,张国华,等. 密集颗粒物质的介观结构[J]. 力学进展,2017,47:263−308.

    SUN Qicheng, LIU Xiaoxing, ZHANG Guohua, et al. The mesoscopic structures of dense granular materials[J]. Advances in Mechanics,2017,47:263−308.
    [34]
    付龙龙,周顺华,田志尧,等. 双轴压缩条件下颗粒材料中力链的演化[J]. 岩土力学,2019,40(6):2427−2434.

    FU Longlong, ZHOU Shunhua, TIAN Zhiyao, et al. Force chain evolution in granular materials during biaxial compression[J]. Rock and Soil Mechanics,2019,40(6):2427−2434.
    [35]
    孙其诚,王光谦. 静态堆积颗粒中的力链分布[J]. 物理学报,2008,57(8):4667−4674. doi: 10.3321/j.issn:1000-3290.2008.08.007

    SUN Qicheng, WANG Guangqian. Force distribution in static granular matter in two dimensions[J]. Acta Physica Sinica,2008,57(8):4667−4674. doi: 10.3321/j.issn:1000-3290.2008.08.007
    [36]
    孙其诚,金峰,王光谦,等. 二维颗粒体系单轴压缩形成的力链结构[J]. 物理学报,2010,59(1):30−37. doi: 10.7498/aps.59.30

    SUN Qicheng, JIN Feng, WANG Guangqian, et al. Force chains in a uniaxially compressed static granular matter in 2D[J]. Acta Physica Sinica,2010,59(1):30−37. doi: 10.7498/aps.59.30
    [37]
    杨柳,李飞,王金安,等. 综放开采顶煤与覆岩力链结构及演化特征[J]. 煤炭学报,2018,43(8):2144−2154.

    YANG Liu, LI Fei, WANG Jin’an, et al. Structures and evolution characteristics of force chains in top coal and overlying strata under fully mechanized caving mining[J]. Journal of China Coal Society,2018,43(8):2144−2154.
    [38]
    TORDESILLAS A, MUTHUSWAMY M. On the modeling of confined buckling of force chains[J]. Journal of the Mechanics and Physics of Solids,2009,57(4):706−727. doi: 10.1016/j.jmps.2009.01.005
    [39]
    BAGI K, KUHN M R. A definition of particle rolling in a granular assembly in terms of particle translations and rotations[J]. Journal of Applied Mechanics,2004,71(4):493−501. doi: 10.1115/1.1755693
    [40]
    LEŚNIEWSKA D, TORDESILLAS A, PIETRZAK M, et al. Structured deformation of granular material in the state of active earth pressure[J]. Computers and Geotechnics,2023,157:105316. doi: 10.1016/j.compgeo.2023.105316
    [41]
    蒋军,徐正红,徐凌峰. 颗粒体材料中的力链压曲变形[J]. 浙江大学学报(工学版),2010,44(10):1931−1937.

    JIANG Jun, XU Zhenghong, XU Lingfeng. Buckling deformation of force chain of granular material[J]. Journal of Zhejiang University (Engineering Science),2010,44(10):1931−1937.
    [42]
    ZHAO Y L, WANG Y X, WANG W J, et al. Modeling of non-linear rheological behavior of hard rock using triaxial rheological experiment[J]. International Journal of Rock Mechanics and Mining Sciences,2017,93:66−75. doi: 10.1016/j.ijrmms.2017.01.004
    [43]
    MU W Q, LI L C, YANG T H, et al. Numerical investigation on a grouting mechanism with slurry-rock coupling and shear displacement in a single rough fracture[J]. Bulletin of Engineering Geology and the Environment,2019,78(8):6159−6177. doi: 10.1007/s10064-019-01535-w
    [44]
    FU Y L, XIE K, XIAO F K, et al. Motion characteristics of collapse body during the process of expanding a rescue channel[J]. Applied Sciences,2022,12(21):11034. doi: 10.3390/app122111034
    [45]
    PETERS J F, MUTHUSWAMY M, WIBOWO J, et al. Characterization of force chains in granular material[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2005, 72:041307.
    [46]
    SCHWAGER T. Computational Granular Dynamics:Models and Algorithms [M]. Softcover reprint of hardcover 1st ed., Springer:2005
    [47]
    王金安,杨柳,李飞. 散体介质复杂力链网络演化持续同调拓扑研究[J]. 工程科学学报,2023,45(5):728−736.

    WANG Jinan, YANG Liu, LI Fei. Topological study of persistent homology on complicated force chain network evolution in granular media[J]. Chinese Journal of Engineering,2023,45(5):728−736.
    [48]
    徐正红. 颗粒物质的力链压曲变形及本构模型研究[D]. 杭州:浙江大学,2011.

    XU Zhenghong. Research of the buckling deformation of force chain and constitutive model of granular materials[D]. Hangzhou:Zhejiang University, 2011.
    [49]
    戴北冰,杨峻,周翠英. 颗粒摩擦对颗粒材料剪切行为影响的试验研究[J]. 力学学报,2013,45(3):375−383. doi: 10.6052/0459-1879-12-250

    DAI Beibing, YANG Jun, ZHOU Cuiying. An experimental study on the effect of inter-particle friction on shear behavior of granular materials[J]. Chinese Journal of Theoretical and Applied Mechanics,2013,45(3):375−383. doi: 10.6052/0459-1879-12-250
    [50]
    段总样,赵云华,徐璋. 基于离散单元法和人工神经网络的近壁颗粒动力学特征研究[J]. 力学学报,2021,53(10):2656−2666.

    DUAN Zongyang, ZHAO Yunhua, XU Zhang. Characterization of near-wall particle dynamics based on discrete element method andartificial neural network[J]. Chinese Journal of Theoretical and Applied Mechanics,2021,53(10):2656−2666.

Catalog

    Article views (67) PDF downloads (27) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close