Citation: | XU Qingfeng,PENG Shoujian,XU Jiang,et al. Experimental study on impact failure characteristics of roadway with different ellipticity[J]. Journal of China Coal Society,2025,50(3):1484−1498. DOI: 10.13225/j.cnki.jccs.2024.0115 |
In order to study the influence mechanism of ellipticity on the impact damage characteristics of roadways, the multifunctional physical simulation test system for deep rockburst developed independently was used to carry out the impact damage test of elliptical roadways under the true three-dimensional conditions, and analyze the evolution law of impact damage of roadways with different ellipticity. The results show that: the peak stress and axial deformation of the sample will increase and then decrease with the increase of ellipticity, and the peak stress and axial deformation of the sample with an ellipticity of 1.25 is the largest; the damage of the roadway is mainly concentrated in the two sides of the side gangs, and the 3D localization of the acoustic emission verifies this kind of damage characteristic; the acoustic emission counts and energies of the perturbation loading period increase suddenly, and the b value of the acoustic emission decreases suddenly, which means that the sample produces the large-scale damage under the disturbing stress. large-scale damage. With the increase of ellipticity, the maximum counts, the maximum energy, and the decrease of b-value of the acoustic emission all show an increasing trend. The nonlinear relationship between the cumulative energy and time of the acoustic emission of the samples with different ellipticity proves the principle of sudden energy increase of impact damage. The infrared cloud map and average infrared radiation temperature of different ellipticity samples have obvious increase in damage, among which the ellipticity of 1.25 samples is the most significant. The test results provide theoretical support for the design of underground engineering roadway section to prevent rockburst.
[1] |
何满潮. 深部软岩工程的研究进展与挑战[J]. 煤炭学报,2014,39(8):1409−1417.
HE Manchao. Progress and challenges of soft rock engineering in depth[J]. Journal of China Coal Society,2014,39(8):1409−1417.
|
[2] |
XU L M, LU K X, PAN Y S, et al. Study on rock burst characteristics of coal mine roadway in China[J]. Energy Sources,2022,44(2):3016−3035. doi: 10.1080/15567036.2019.1655114
|
[3] |
KENETI A, SAINSBURY B A. Review of published rockburst events and their contributing factors[J]. Engineering Geology,2018,246:361−373. doi: 10.1016/j.enggeo.2018.10.005
|
[4] |
陈陆望,白世伟. 坚硬脆性岩体中圆形洞室岩爆破坏的平面应 变模型试验研究[J]. 岩石力学与工程学报,2007,26(12):2504−2509. doi: 10.3321/j.issn:1000-6915.2007.12.016
CHEN Luwang, BAI Shiwei. Research on plane strain model test of rockburst of circular cavern in hard brittle rockmass[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(12):2504−2509. doi: 10.3321/j.issn:1000-6915.2007.12.016
|
[5] |
陈陆望,白世伟,殷晓曦,等. 坚硬岩体中马蹄形洞室岩爆破坏平面应变模型试验[J]. 岩土工程学报,2008,30(10):1520−1526. doi: 10.3321/j.issn:1000-4548.2008.10.017
CHEN Luwang, BAI Shiwei, YIN Xiaoxi, et al. Plane-strain model tests on rock-burst of horseshoe section Caverns in hard and brittle rockmass[J]. Chinese Journal of Geotechnical Engineering,2008,30(10):1520−1526. doi: 10.3321/j.issn:1000-4548.2008.10.017
|
[6] |
张向阳,顾金才,徐景茂,等. 深部高地应力条件下直墙拱形洞室受力破坏规律研究[J]. 防护工程,2017,39(3):6−12.
ZHANG Xiangyang, GU Jincai, XU Jingmao, et al. Bearing condition and failure regularity of deep upright-arch cavern under high ground stress[J]. Protective Engineering,2017,39(3):6−12.
|
[7] |
张晓君,林芊君. 直墙拱形巷(隧)道岩爆破坏模式及能量分析[J]. 地下空间与工程学报,2016,12(S2):849−855.
ZHANG Xiaojun, LIN Qianjun. Failure mode and energy analysis of rock burst in straight-wall arched roadway (tunnel)[J]. Chinese Journal of Underground Space and Engineering,2016,12(S2):849−855.
|
[8] |
刘崇岩,赵光明,许文松,等. 高应力巷道岩爆过程及时空演化规律试验研究[J]. 煤炭学报,2020,45(3):998−1008.
LIU Chongyan, ZHAO Guangming, XU Wensong, et al. Experimental study on rockburst and its spatio-temporal evolution criterion in high stress roadway[J]. Journal of China Coal Society,2020,45(3):998−1008.
|
[9] |
CHEON Dae-sung, JEON Seokwon, PARK Chan. Characterization of brittle failure using physical model experiments under polyaxial stress conditions[J]. International Journal of Rock Mechanics and Mining Sciences,2011,48(1):152−160. doi: 10.1016/j.ijrmms.2010.10.001
|
[10] |
司雪峰,宫凤强,罗勇,等. 深部三维圆形洞室岩爆过程的模拟试验[J]. 岩土力学,2018,39(2):621−634.
SI Xuefeng, GONG Fengqiang, LUO Yong, et al. Experimental simulation on rockburst process of deep three-dimensional circular cavern[J]. Rock and Soil Mechanics,2018,39(2):621−634.
|
[11] |
宫凤强,罗勇,司雪峰,等. 深部圆形隧洞板裂屈曲岩爆的模拟试验研究[J]. 岩石力学与工程学报,2017,36(7):1634−1648.
GONG Fengqiang, LUO Yong, SI Xuefeng, et al. Experimental modelling on rockburst in deep hard rock circular tunnels[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(7):1634−1648.
|
[12] |
宫凤强,伍武星,李天斌,等. 深部硬岩矩形隧洞围岩板裂破坏的试验模拟研究[J]. 岩土力学,2019,40(6):2085−2098.
GONG Fengqiang, WU Wuxing, LI Tianbin, et al. Simulation experimental study of spalling failure of surrounding rock of rectangular tunnel of deep hard rock[J]. Rock and Soil Mechanics,2019,40(6):2085−2098.
|
[13] |
宫凤强,罗勇,刘冬桥. 深部直墙拱形隧洞围岩板裂破坏的模拟试验研究[J]. 岩土工程学报,2019,41(6):1091−1100.
GONG Fengqiang, LUO Yong, LIU Dongqiao. Simulation tests on spalling failure in deep straight-wall-top-arch tunnels[J]. Chinese Journal of Geotechnical Engineering,2019,41(6):1091−1100.
|
[14] |
LUO Y, GONG F Q, LIU D Q, et al. Experimental simulation analysis of the process and failure characteristics of spalling in D-shaped tunnels under true-triaxial loading conditions[J]. Tunnelling and Underground Space Technology,2019,90:42−61. doi: 10.1016/j.tust.2019.04.020
|
[15] |
GONG F Q, WU W X, TIANBIN LI, et al. Experimental simulation and investigation of spalling failure of rectangular tunnel under different three-dimensional stress states[J]. International Journal of Rock Mechanics and Mining Sciences,2019,122:104081. doi: 10.1016/j.ijrmms.2019.104081
|
[16] |
李地元,成腾蛟,周韬,等. 冲击载荷作用下含孔洞大理岩动态力学破坏特性试验研究[J]. 岩石力学与工程学报,2015,34(2):249−260.
LI Diyuan, CHENG Tengjiao, ZHOU Tao, et al. Experimental study of the dynamic strength and fracturing characteristics of marble samples with a single hole under impact loading[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(2):249−260.
|
[17] |
杜明瑞,靖洪文,苏海健. 椭圆形孔洞对砂岩试样强度及变形特征影响研究[J]. 采矿与安全工程学报,2017,34(1):141−147.
DU Mingrui, JING Hongwen, SU Haijian. Study on the influence of elliptical hole on strength and deformation characteristics of sandstone sample[J]. Journal of Mining & Safety Engineering,2017,34(1):141−147.
|
[18] |
朱泉企,李地元,李夕兵. 含预制椭圆形孔洞大理岩变形破坏力学特性试验研究[J]. 岩石力学与工程学报,2019,38(S1):2724−2733.
ZHU Quanqi, LI Diyuan, LI Xibing. Experimental study on deformation and failure mechanical properties of marble with prefabricated elliptical holes[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(S1):2724−2733.
|
[19] |
王炀,何满潮,刘冬桥,等. 深部椭圆形洞室围岩冲击岩爆实验研究[J]. 岩石力学与工程学报,2021,40(11):2214−2228.
WANG Yang, HE Manchao, LIU Dongqiao, et al. Experimental study on impact rockburst of surrounding rock in deep elliptical Caverns[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(11):2214−2228.
|
[20] |
王炀. 含不同长短轴比椭圆形洞室的砂岩冲击岩爆实验研究[D]. 北京:中国矿业大学(北京),2020.
WANG Yang. Experimental study on sandstone rockburst with elliptical Caverns with different long-short axis ratios[D]. Beijing:China University of Mining & Technology-Beijing, 2020.
|
[21] |
周辉,陈珺,张传庆,等. 低强高脆岩爆模型材料配比试验研究[J]. 岩土力学,2019,40(6):2039−2049.
ZHOU Hui, CHEN Jun, ZHANG Chuanqing, et al. Experimental study of the rockburst model material with low-strength and high-brittleness[J]. Rock and Soil Mechanics,2019,40(6):2039−2049.
|
[22] |
黄禄渊,杨树新,崔效锋,等. 华北地区实测应力特征与断层稳定性分析[J]. 岩土力学,2013,34(S1):204−213.
HUANG Luyuan, YANG Shuxin, CUI Xiaofeng, et al. Analysis of measured stress characteristics and fault stability in North China[J]. Rock and Soil Mechanics,2013,34(S1):204−213.
|
[23] |
梁昌玉,李晓,李守定,等. 岩石静态和准动态加载应变率的界限值研究[J]. 岩石力学与工程学报,2012,31(6):1156−1161.
LIANG Changyu, LI Xiao, LI Shouding, et al. Study of strain rates threshold value between static loading and quasi-dynamic loading of rock[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(6):1156−1161.
|