Citation: | WANG Jiachen,YANG Shengli,LI Lianghui,et al. Prediction of rock mixed ratio in image-based intelligent control of drawing opening in longwall top coal caving face – Part I: Surface rock mixed ratio of coal flow[J]. Journal of China Coal Society,2025,50(1):150−165. DOI: 10.13225/j.cnki.jccs.2024.0207 |
Image-based intelligent control of longwall top coal caving (LTCC) is a critical technology for achieving intelligent coal mining. Its core lies in monitoring the rock mixed ratio (RMR) of coal flow to control the drawing opening. However, challenges such as low illumination in underground environments, the irregular shapes of coal-rock particles, and their accumulation and compression significantly hinder the prediction of RMR in coal flow. To address these issues, this study focuses on the surface RMR of coal flow. A coal-rock image database was constructed under various illumination conditions to investigate the influence of illumination and coal-rock types on image segmentation performance. A high-fidelity experimental platform for the “caving-transport” process in LTCC was developed, and a high-precision recognition method for surface projection area-based RMR of coal flow under complex scenarios was proposed, based on multi-illuminance fusion and optical flow optimization. Furthermore, the impact of different projection angles and methods on the extraction of two-dimensional morphological features of coal-rock particles was explored, and the quantitative relationships between morphological features across dimensions were clarified. A “size + shape” feature fusion model was developed to reasonably predict the surface volume-based RMR of coal flow. Finally, the proposed methods were validated using both laboratory and field data. The research findings indicate that as illumination increases, the recognition accuracy of the two coal-rock combination forms initially increases, stabilizes, and then slightly decreases. By setting a reasonable illumination level (e.g., 17 730 lx), the mAP@0.5 for the coal + mudstone combination improved from 88.7% (3 180 lx) to 92.3%. The introduction of multi-illuminance fusion and optical flow analysis further enhanced the recognition accuracy and adaptability of surface projection area-based RMR under complex scenarios. A reasonable selection of light source wavelength can amplify the relative diffuse reflectance differences of coal-rock particles, increasing the distinguishability of image features. Moreover, appropriate projection methods improve the accuracy of predicting the projection area of irregularly shaped coal-rock particles, reducing the prediction error from 60% to less than 10%. By incorporating shape features into the volume prediction model, the prediction accuracy was significantly improved, with the coefficient of determination increasing from
[1] |
王家臣. 我国放顶煤开采的工程实践与理论进展[J]. 煤炭学报,2018,43(1):43−51.
WANG Jiachen. Engineering practice and theoretical progress of top-coal caving mining technology in China[J]. Journal of China Coal Society,2018,43(1):43−51.
|
[2] |
王国法,杜毅博,任怀伟,等. 智能化煤矿顶层设计研究与实践[J]. 煤炭学报,2020,45(6):1909−1924.
WANG Guofa, DU Yibo, REN Huaiwei, et al. Top level design and practice of smart coal mines[J]. Journal of China Coal Society,2020,45(6):1909−1924.
|
[3] |
葛世荣,胡而已,李允旺. 煤矿机器人技术新进展及新方向[J]. 煤炭学报,2023,48(1):54−73.
GE Shirong, HU Eryi, LI Yunwang. New progress and direction of robot technology in coal mine[J]. Journal of China Coal Society,2023,48(1):54−73.
|
[4] |
王家臣,黄国君,杨胜利,等. 煤矸识别与自动化放煤控制系统:200910152006. X [P]. 2010-01-27.
|
[5] |
王家臣,黄国君,杨宝贵,等. 顶煤放出规律跟踪仪及其测定顶煤放出规律的方法:ZL200910090005.9 [P]. 2009-08-26.
|
[6] |
潘卫东,李新源,员明涛,等. 基于顶煤运移跟踪仪的自动化放煤技术原理及应用[J]. 煤炭学报,2020,45(S1):23−30.
PAN Weidong, LI Xinyuan, YUN Mingtao, et al. Technology principle and field application of automatic coal drawing based on the top coal tracker[J]. Journal of China Coal Society,2020,45(S1):23−30.
|
[7] |
LV Z Q, CUI Y, ZHANG K H, et al. Investigating comparisons on the coal and gangue in various scenarios using multidimensional image features[J]. Minerals Engineering,2023,204:108450. doi: 10.1016/j.mineng.2023.108450
|
[8] |
司垒,王忠宾,熊祥祥,等. 基于改进U-net网络模型的综采工作面煤岩识别方法[J]. 煤炭学报,2021,46(S1):578−589.
SI Lei, WANG Zhongbin, XIONG Xiangxiang, et al. Coal-rock recognition method of fully-mechanized coal mining face based on improved U-Net network model[J]. Journal of China Coal Society,2021,46(S1):578−589.
|
[9] |
张云,童亮,来兴平,等. 基于机器视觉的煤尘环境下掘进空间煤岩界面感知与精准识别[J]. 煤炭学报,2024,49(7):3276−3290.
ZHANG Yun, TONG Liang, LAI Xingping, et al. Coal-rock interface perception and accurate recognition in heading face under coal dust environment based on machine vision[J]. Journal of China Coal Society,2024,49(7):3276−3290.
|
[10] |
袁永,秦正寒,夏永琪,等. 基于改进U-Net的煤矸图像分割模型与放煤控制技术研究 [J/OL]. 煤炭学报,1−18.
YUAN Yong, QIN Zhenghan, XIA Yongqi, et al. Research on coal gangue image recognition model based on improved u-net and top coal caving control [J/OL]. Journal of China Coal Society, 1−18.
|
[11] |
李良晖. 基于差异照度图像的综放开采煤矸混合度识别研究 [D]; 北京:中国矿业大学(北京),2019.
LI Lianghui. Research on different illuminant image recognition of coal and gangue mixture degree in longwall top-coal caving face[D]. Beijing:China University of Mining & Technology, Beijing, 2019.
|
[12] |
LI L H, WANG J C, YANG S L, et al. Binocular stereo vision based illuminance measurement used for intelligent lighting with LED[J]. Optik,2021,237:166651. doi: 10.1016/j.ijleo.2021.166651
|
[13] |
王星,高峰,陈吉,等. 基于GAN网络的煤岩图像样本生成方法[J]. 煤炭学报,2021,46(9):3066−3078.
WANG Xing, GAO Feng, CHEN Ji, et al. Generative adversarial networks based sample generation of coal and rock images[J]. Journal of China Coal Society,2021,46(9):3066−3078.
|
[14] |
王家臣,潘卫东,张国英,等. 图像识别智能放煤技术原理与应用[J]. 煤炭学报,2022,47(1):87−101.
WANG Jiachen, PAN Weidong, ZHANG Guoying, et al. Principles and applications of image-based recognition of withdrawn coal and intelligent control of draw opening in longwall top coal caving face[J]. Journal of China Coal Society,2022,47(1):87−101.
|
[15] |
王家臣,李良晖,杨胜利. 不同照度下煤矸图像灰度及纹理特征提取的实验研究[J]. 煤炭学报,2018,43(11):3051−3061.
WANG Jiachen, LI Lianghui, YANG Shengli. Experimental study on gray and texture features extraction of coal and gangue image under different illuminance[J]. Journal of China Coal Society,2018,43(11):3051−3061.
|
[16] |
魏炜杰. 考虑顶煤块度分布的综放开采顶煤放出规律研究[D]. 北京:中国矿业大学(北京),2021.
WEI Weijie. Study on top coal caving law in fully mechanized top coal caving mining considering top coal fragmentation distribution[D]. Beijing:China University of Mining & Technology, Beijing, 2021.
|
[17] |
SUN D Q, ROTH S, BLACK M J. A quantitative analysis of current practices in optical flow estimation and the principles behind them[J]. International Journal of Computer Vision,2014,106(2):115−137. doi: 10.1007/s11263-013-0644-x
|
[18] |
XU H F, ZHANG J, CAI J F, et al. GMFlow:Learning optical flow via global matching[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ:IEEE, 2022:8111−8120.
|
[19] |
WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7:Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ:IEEE, 2023:7464-7475.
|
[20] |
CHEUNG K M, BAKER S, KANADE T. Shape-from-silhouette across time part I:Theory and algorithms[J]. International Journal of Computer Vision,2005,62(3):221−247. doi: 10.1007/s11263-005-4881-5
|
[21] |
LI L H, WANG J C, YANG S L, et al. A voxel-based clump generation method used for DEM simulations[J]. Granular Matter,2022,24(3):89. doi: 10.1007/s10035-022-01251-5
|
[22] |
LI L H, WANG J C, YANG S L, et al. Estimate of three-dimensional Wadell roundness of irregular particles using image processing and topographic analysis[J]. Construction and Building Materials,2023,396:132273. doi: 10.1016/j.conbuildmat.2023.132273
|
[23] |
BAGHERI G H, BONADONNA C, MANZELLA I, et al. On the characterization of size and shape of irregular particles[J]. Powder Technology,2015,270:141−153. doi: 10.1016/j.powtec.2014.10.015
|
[24] |
ZHENG J, HRYCIW R D. Traditional soil particle sphericity, roundness and surface roughness by computational geometry[J]. Géotechnique,2015,65(6):494−506.
|
[25] |
BLOTT S J, PYE K. Particle shape:A review and new methods of characterization and classification[J]. Sedimentology,2008,55(1):31−63. doi: 10.1111/j.1365-3091.2007.00892.x
|
1. |
高明仕,俞鑫,徐东,贺永亮,赵世帆. 基于冲能吸能平衡效应的冲击地压巷道分级支护研究. 岩土力学. 2024(01): 38-48 .
![]() | |
2. |
田正,胡智星,张重发,张新鹏,种磊刚,张开玉,孙宁旭. 动载扰动下特厚煤层巷道破坏机理及其控制技术研究. 煤炭技术. 2024(03): 26-31 .
![]() | |
3. |
来兴平,贾冲,胥海东,崔峰,刘旭东,王昊,陆长亮,张随林,何仕凤. 急倾斜深埋巨厚煤层掘巷冲击地压前兆特征及其灾害防治. 煤炭学报. 2024(01): 337-350 .
![]() | |
4. |
李常浩. 工作面末采期间煤层大巷群围岩控制技术研究. 煤. 2024(04): 20-23+28 .
![]() | |
5. |
吴丽丽,李金鹏,武雨祺,郑贺崇. 抗冲击地压复合夹芯组合板的静、动态力学性能研究. 振动与冲击. 2024(17): 1-11+18 .
![]() | |
6. |
刘国磊,王泽东,张修峰,曲效成,崔嵛,马秋峰,李玉霞. 基于围岩应力差异梯度控制的深部煤巷防冲机制与技术. 煤炭学报. 2024(S2): 674-693 .
![]() | |
7. |
苗磊刚,牛园园,潘泱波. 巷道动力失稳下围岩松动特征分析及支护参数选取. 能源与环保. 2023(02): 275-280 .
![]() | |
8. |
王爱文,孙郑齐,潘一山,范德威,李超,于新河,王岗,卢闯. 梯度围岩结构应力波透射模型与传播衰减规律. 煤炭学报. 2023(05): 1969-1984 .
![]() | |
9. |
袁亮,王恩元,马衍坤,刘玉冰,李晓亮. 我国煤岩动力灾害研究进展及面临的科技难题. 煤炭学报. 2023(05): 1825-1845 .
![]() | |
10. |
赵建光. 锚索棚式加强支护方法及在特殊条件下的应用. 煤炭技术. 2023(07): 71-75 .
![]() | |
11. |
贺永亮,王素萍,付玉平,曹雪芳,孙大力. 基于多源信息融合的冲击地压风险预警与弱结构防治技术. 煤矿安全. 2023(07): 78-84 .
![]() | |
12. |
吕祥锋,曹立厅,孟令峰,李新跃. 旋压触探随钻摩阻表征围岩应力分布特征研究. 岩石力学与工程学报. 2023(10): 2385-2399 .
![]() | |
13. |
付玉凯. 基于能量计算的冲击地压巷道支护参数确定方法研究. 煤炭工程. 2023(12): 15-21 .
![]() | |
14. |
谭香,伍伟敏,卢耀晖. 深部高应力巷道卸压控制及支护技术研究. 矿业研究与开发. 2022(01): 106-112 .
![]() | |
15. |
谢生荣,王恩,陈冬冬,蒋再胜,李辉,刘瑞鹏. 深部强采动大断面煤巷围岩外锚-内卸协同控制技术. 煤炭学报. 2022(05): 1946-1957 .
![]() | |
16. |
肖鹏,于海洋,王东,赵显江,李长青,赵宝相,文志杰. 充填开采超前段主动支护替代被动支护技术与应用. 山东科技大学学报(自然科学版). 2022(03): 41-49 .
![]() | |
17. |
王巍,张传宝. 千万吨矿井回采巷道锚杆支护技术优化. 煤炭科学技术. 2022(S1): 106-111 .
![]() | |
18. |
钱红亮,赵晓凡. 综放工作面冲击危险性评价及防治措施. 煤. 2022(10): 29-33 .
![]() | |
19. |
鞠文君,杨鸿智,付玉凯,焦建康,李中伟,孙刘伟. 煤矿冲击地压巷道支护技术发展与展望. 煤炭工程. 2022(11): 1-6 .
![]() | |
20. |
吴宇,郝阳,浦海,沈玲玲,张彦,耿浩哲. 煤岩体变形破坏的能量演化模型及冲击危险性评价. 采矿与安全工程学报. 2022(06): 1177-1186 .
![]() | |
21. |
安栋,陈征,宋义敏,宋嘉祺,许海亮. 冲击地压矿井巷道吸能防冲液压支架防冲效果研究. 煤炭科学技术. 2022(11): 12-19 .
![]() | |
22. |
陈金宇,王社新,贾金河,付玉凯,孙卓越. 卸压钻孔对锚索作用的影响及控制方法研究. 矿业安全与环保. 2022(06): 68-72+96 .
![]() | |
23. |
张一飞. 8603工作面回采巷道支护方案优化及数值模拟. 山东煤炭科技. 2021(01): 1-3+6 .
![]() | |
24. |
吴拥政,付玉凯,何杰,陈金宇,褚晓威,孟宪志. 深部冲击地压巷道“卸压-支护-防护”协同防控原理与技术. 煤炭学报. 2021(01): 132-144 .
![]() | |
25. |
胡国忠,王春博,许家林,吴旭飞,秦伟. 微波辐射降低硬煤冲击倾向性试验研究. 煤炭学报. 2021(02): 450-465 .
![]() | |
26. |
张仁松. 巷道应力路径变化的研究. 煤炭技术. 2021(04): 28-31 .
![]() | |
27. |
孙小岩,贺永亮,张志聪. 大断面托顶煤巷道支护技术研究. 煤炭工程. 2021(05): 51-56 .
![]() | |
28. |
程勃,徐家庆,覃健. 沃溪坑口深井开采支护工艺优化与实践. 现代矿业. 2021(04): 193-196 .
![]() | |
29. |
高明仕,贺永亮,徐东,俞鑫. 冲击地压巷道减隔震技术原理及应用. 煤炭科学技术. 2021(06): 53-60 .
![]() | |
30. |
窦林名,周坤友,宋士康,曹安业,崔恒,巩思园,马小涛. 煤矿冲击矿压机理、监测预警及防控技术研究. 工程地质学报. 2021(04): 917-932 .
![]() | |
31. |
赵锦刚,宋丽强,雷东记. 井巷揭煤作业综合防突措施研究. 能源与环保. 2021(09): 50-56 .
![]() | |
32. |
郑仰峰,翟成,辛海会,唐伟,孙勇,徐吉钊. 煤巷掘进工作面强弱耦合能量控制防治煤与瓦斯突出理论与方法. 采矿与安全工程学报. 2021(06): 1269-1280 .
![]() | |
33. |
马伟. 玉溪煤矿1301工作面回风顺槽支护设计研究. 山东煤炭科技. 2020(12): 70-72 .
![]() |